London Theory Institute Lectures Series

Chris Herzog
 6_{6} What is an anomaly ? 9

Informations
Pre-recorded Lectures :
Youtube
Live Tutorial :
Monday 25th of October, 10h30

Abstract

Four examples of an anomaly are presented, two from quantum mechanics and two from quantum field theory. The first example is a charged bead on a wire in the presence of a magnetic field. This example of a 't Hooft anomaly is related to the theta angle in Yang-Mills theory. The remaining three examples present scale and conformal anomalies. We will scatter a plane wave off an attractive delta function in two dimensions. We also look at a massless scalar field, both in two dimensions without a boundary and in three dimensions with one.

What is an Anomaly?

Lectures for New PhD Students
 London Theory Institute
 Problem Set

due Monday 25 October

1. Charged Bead on a Wire with a Magnetic Field: Consider a bead of mass m and charge q constrained to move on a circular wire of radius R. Concentric with the wire, there is a constant magnetic field of strength B in a disk shaped region of radius $R_{0}<R$. Show that the quantum mechanical Hamiltonian for the bead takes the form

$$
H=c\left(-i \frac{\partial}{\partial \theta}+\gamma\right)^{2} .
$$

Express the constants c and γ in terms of m, q, B, R, and R_{0}.
2. A Dihedral Group: Show that the elements $-1, R_{\pi}$, and C, subject to the constraints $R_{\pi}^{2}=\mathrm{id}=C^{2}$ and $C R_{\pi} C=-R_{\pi}$ generate the dihedral group D_{8}.
3. Weyl transformations: Verify the following Weyl transformation rules:

$$
\begin{aligned}
\delta \Gamma_{\mu \nu}^{\lambda} & =\delta_{\mu}^{\lambda} \partial_{\nu} \omega+\delta_{\nu}^{\lambda} \partial_{\mu} \omega-g_{\mu \nu} \partial^{\lambda} \omega \\
\delta n_{\mu} & =\omega n_{\mu}, \quad \delta n^{\mu}=-\omega n^{\mu} \\
\delta K_{\mu \nu} & =\omega K_{\mu \nu}+h_{\mu \nu} n^{\lambda} \partial_{\lambda} \omega, \\
\delta K & =h^{\mu \nu} K_{\mu \nu}=-\omega K+2 n^{\lambda} \partial_{\lambda} \omega, \\
\delta R_{(2 d)} & =-2 \omega R_{(2 d)}-4 \square \omega, \quad \delta \square_{(2 d)}=-2 \omega \square_{(2 d)} .
\end{aligned}
$$

A Weyl transformation acts on the metric as $g_{\mu \nu} \rightarrow e^{2 \omega(x)} g_{\mu \nu}$. Here n_{μ} is a unit normal to the boundary, $h_{\mu \nu}=g_{\mu \nu}-n_{\mu} n_{\nu}$ is a projector onto the boundary, and $K_{\mu \nu}=h_{\mu \lambda} \nabla^{\lambda} n_{\nu}$ is the extrinsic curvature.
4. The Conformally Coupled Scalar: Find the value of the constant ξ that makes the following scalar field action Weyl invariant:

$$
S=\int d^{d} x \sqrt{\operatorname{det} g}\left[\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)+\xi R \phi^{2}\right]
$$

where R is the Ricci scalar curvature. Assume the Weyl transformation rules $g_{\mu \nu} \rightarrow$ $e^{2 \omega(x)} g_{\mu \nu}$ and $\phi(x) \rightarrow e^{-\frac{d-2}{2} \omega(x)} \phi(x)$.

The following two questions assume a normalization of the boundary anomaly coefficients that follows from the following anomalous scale variation of the effective action

$$
\delta_{\sigma} \mathcal{W}=\int d^{2} x \sqrt{\operatorname{det} h}\left(a R_{(2 d)}+b \hat{K}_{\mu \nu} \hat{K}^{\mu \nu}\right) \sigma
$$

where $R_{(2 d)}$ is the Ricci scalar curvature on the boundary and $\hat{K}_{\mu \nu}=K_{\mu \nu}-\frac{1}{2} h_{\mu \nu} K$ is the traceless part of the extrinsic curvature.
5. *Boundary "a" for the Free Scalar: Compute the boundary coefficient a for a conformally coupled three dimensional scalar field by computing the partition function on a hemisphere with both Dirichlet and Neumann boundary conditions.
6. *Boundary "b" for the Free Scalar: Compute the boundary coefficient b for the conformally coupled three dimensional scalar by computing the two point function of the displacement operator, both in the case of Neumann and Dirichlet boundary conditions.

