
London Theory Institute
Lectures Series

Chris Hull

❝ Duality Symmetry in String Theory ❞

Informations
Pre-recorded Lectures : Youtube

Live Tutorial : Monday 22nd of November, 10h30

Abstract

This lecture provides an introduction to duality symmetries in string the-
ory.

String theory was originally formulated as a theory of strings propagating
in space time with interactions governed by the string coupling constant
g. Scattering amplitudes for small g were constructed as a perturbation
theory in g. Five consistent supersymmetric string theories were found, all
in 10 spacetime dimensions with five distinct perturbation theories. This left
many questions unanswered, such as why there should be five apparently
consistent quantum theories of gravity and what happens to these theories
as the coupling constant is increased.

Such questions were answered by the developments in the mid-1990s that
have been called the 2nd superstring revolution. Dualities proved to be the
key to uncovering the non-perturbative structure of superstring theory and in
particular its strong coupling behaviour. When g is large, one can analyse the
theory as a perturbation theory in 1/g and seek a “dual theory” with coupling
constant g’ whose perturbative expansion in g’ matches the behaviour of the
original theory as a perturbation theory in 1/g on identifying g’=1/g. In
some cases the dual theory is again a string theory, which might be a different
string theory from the original one. In other cases, the dual theory isn’t a
string theory at all, but a new theory – M-theory. This leads to a picture
in which all 5 string theories are related by dualities and so are all seen as
different limits of M-theory. Duality transformation provide new symmetries
of string/M theory and T,S and U-dualities. Remarkably, the theory that
emerges Is no longer just a theory of strings but one which includes both
strings and branes which are higher dimensional extended objects. As the
branes are related to strings by duality symmetries, they should be regarded
as being on the same footing as the strings and of equal importance.

The lecture explores all of these issues and discusses some examples.

https://youtube.com/playlist?list=PLlva4MroG-KHsP0WGLxRk9ZWsmAHUklMT


Duality Symmetries in String Theory: Problems

1) T-duality.
a) Consider the bosonic string propagating on a spacetime MD × S1 which
is a product of D-dimensional Minkowski space with coordinates Xµ (with
D = 25) and a circle of radius R with coordinate Y which is periodic Y ∼
Y + 2π. The action is

S =
1

2
T

∫
d2σ
√
h
[
∂aX

µ∂aXνηµν +R2∂aY ∂
aY
]

(1)

Here σa = (′σ1, σ2) are the world-sheet coordinates and hab is the world-sheet
metric, with h = | dethab|. This can be coupled to a world-sheet gauge field
Aa by the minimal coupling

∂aY → DaY ≡ ∂aY + Aa

so that the action becomes

S =
1

2
T

∫
d2σ
√
h
[
∂aX

µ∂aXνηµν +R2DaY D
aY
]

What is the gauge symmetry of this action for which Aa is the gauge field?
What theory results from integrating out A?

b) Further modify the action by adding a gauge-invariant term Ỹ F where
Ỹ (σ) is a new world-sheet field and F is the field strength

Fab = ∂aAb − ∂bAa

so that the action becomes

S =
1

2
T

∫
d2σ
√
h
[
∂aX

µ∂aXνηµν +R2DaY D
aY
]

+ α
c

2

∫
d2σ
√
h Ỹ εabFab

(2)
where εab is the alternating tensor on the world-sheet with ε12 = −ε21 = h−1/2,
c is a real constant that we will determine later and α = 1 if the world-sheet
metric hab has Lorentzian signature and α = i if it has Euclidean signature.
(On analytically continuing from Lorentzian to Euclidean signature, εab is
usually taken to go to iεab.) The tensor satisfies

εabεbc = α2δac
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(where α2 = 1 in Lorentzian signature and α2 = −1 in Euclidean signature).
Assume for now that the topology of the world-sheet is such that there are
no winding modes and that all flat gauge fields are pure gauge, i.e. if F = 0,
then A must be of the form Aa = ∂aλ for some λ. Show that on integrating
out Ỹ and making a gauge choice, the original string action (1) is recovered.
Alternatively, an action for X, Ỹ can be obtained by imposing a gauge con-
dition on Y and integrating out Aµ. Show that this action describes a string
moving on a product of MD and a circle of radius R̃ where R̃ = c/TR.

c) We now drop the restriction on the world-sheet topology and consider
the action

S =
1

2
T

∫
d2σ
√
h
[
∂aX

µ∂aXνηµν +R2DaY D
aY
]
− αc

∫
d2σ
√
hεab∂aỸ Ab

Check that this differs from (2) by a total derivative term. Consider the case
that the world-sheet is a 2-torus, so that

σa ∼ σ + 2π

with Euclidean signature, so that α = i. If Ỹ is taken to be periodically
identified, Ỹ ∼ Ỹ + 2π, then Ỹ can have winding modes so that

Ỹ = waσ
a + f(σa)

where f is a function periodic in both σ1 and σ2. Show that the winding
numbers w1, w2 must be integers. Similarly, the gauge parameter λ appearing
in the transformation

Aa → Aa + ∂aλ

can have winding modes, so that

λ = naσ
a + F (σ)

with integral winding numbers n1, n2 and doubly periodic function F . Show
that the action is invariant up to total derivative terms under transforma-
tions with na = 0. For transformations that have na 6= 0, find the value of
the constant c that ensure that the variation of the action under any such
transformation is 2πi times an integer. Hence deduce that the quantum the-
ory will be invariant under gauge transformations with winding number for
this choice of c.
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d) On a toroidal world-sheet, a flat gauge field with F = 0 is a constant
gauge field plus a pure gauge piece, so that

Aa = Āa + ∂aλ

for some constant vector Āa. Check that the action now contains a constant
term

S = −c(2π)2εabwaĀb

Now integrating out Ỹ will include a sum over winding modes wa while inte-
grating out Aa will include an integral over Āb. Show that this then implies
the equivalence between strings on the product of MD with a circle of ra-
dius R and strings on the product of MD with a circle of radius R̃ where
R̃ = c/TR.

2) B-Shifts
a) The string world-sheet action for the bosonic string propagating in a back-
ground with metric gµν , B-field Bµν and dilaton Φ is

S =

∫
d2σ
√
h

[
1

2
T
(
∂aX

µ∂aXνgµν + αεab∂aX
µ∂bX

νBµν

)
+

1

4π
ΦR(h)

]
(3)

(with notation as in question 1). Show that the action is invariant under
transformations of the form

Bµν → Bµν + ∂[µΛν]

while the field equation for Xµ is invariant under the more general transfor-
mations

Bµν → Bµν + ωµν

provided
∂[µωνρ] = 0

b) Consider the case in which the target space is a torus T n so that the
coordinates are periodic

Xµ ∼ Xµ + 2π
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and the world-sheet is a 2-torus, so that

σa ∼ σ + 2π

with Euclidean signature, so that α = i. Then Xµ can have winding modes
so that

Xµ = wµaσ
a + fµ(σa)

Consider transformations of the form

Bµν → Bµν + ωµν

with constant ωµν . Show that the action changes by 2πi times an integer so
that the quantum theory is invariant provided

ωµν =
1

2π
N + µν

where Nµν has integer components.

3) SL(2,Z)
a) SL(2,R) is the group of 2× 2 matrices(

a b
c d

)
, ad− bc = 1

whose entries are real numbers and whose determinant is one. Show that the
2 × 2 matrices whose entries a, b, c, d are integers and whose determinant is
one also form a group – this is the group SL(2,Z).
b) Show that the matrices S, T given by

S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
,

each generate a subgroup of SL(2,Z) and find the form of these subgroups.

c) The electric charge q and magnetic charge p (normalised so that they
are integers) transform under SL(2,Z) S-duality as(

q
p

)
→
(
a b
c d

)(
q
p

)
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Show that an electrically charged state with q = 1, p = 0 transforms to a
dyon with charges q, p that are relatively prime, i.e. which have no common
factors (other than ±1). Deduce that the degeneracy of dyonic states with
charges p, q that are relatively prime is the same as the degeneracy of elec-
trically charged states with q = 1, p = 0.

4.
a) For two metrics g, g̃ related by a Weyl rescaling

g̃µν = e2fgµν

for some f(x), the corresponding scalar curvatures R, R̃ are related by

R̃ = e−2f
[
R− 2(n− 1)∇2f − (n− 2)(n− 1)(∇f)2

]
in n dimensions. The world-sheet formulation leads to a spacetime effective
action in n dimensions for the metric, B-field and dilaton of the form

SN =

∫
dnx
√
−ge−2Φ

[
R + 4∂µΦ∂µΦ− 1

12
HµνρH

µνρ

]
where H is the field strength for Bµν This is sometimes called the ‘string
frame’ action. Find a Weyl rescaling that brings the gravitational kinetic
term to the standard form

S =

∫
dnx
√
−gR + . . .

and find the rest of this ‘Einstein frame’ action.

b) The SO(32) heterotic string gives an effective low energy supergravity
theory with bosonic fields gµν , Bµν ,Φ, Aµ. The string frame action for these
bosonic fields is

Shet = SN −
1

4

∫
d10x
√
−ge−2ΦTrFµνF

µν

where Fµν is the Yang-Mills field strength and the dimension is n = 10.
The Type I string also has gauge group SO(32) and has an an effective low
energy supergravity theory with the same spectrum of fields. For the type I
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string, denote the bosonic fields g′µν , B
′
µν ,Φ

′, A′µ. The string frame action for
these bosonic fields is

SI =

∫
d10x

√
−g′

[
e−2Φ′

(R′ + 4∂µΦ′∂µΦ′)− 1

12
H ′µνρH

′µνρ − 1

4
e−Φ′

TrF ′µνF
′µν
]

Show that these two actions are related by

Φ′ = −Φ
g′µν = e−Φgµν
H ′ = H
F ′ = F

What is the significance of this relation between the two actions?
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Duality Symmetries in String Theory: References

Here are some suggestions for further reading.

References [1-7] are review papers. If you are only going to look at one, I
suggest [1]. Chapter 8 of the book [2] is the one that is most relevant but ear-
lier chapters give some of the background material used. Reference [6] gives
a good introduction to T-duality and [7] gives a more comprehensive review
of T-duality. Reference [8] gives the details of the dimensional reduction of
the theory with metric, b-field and dilaton on an n-torus and shows how the
O(n, n) symmetry arises. [8-11] are some of the original papers.
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