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Outline

@ Motivation
@ PT-symmetric in quantum mechanics
© The CPT theorem

© Parity, charge conjugation, time reversal, strong reflection,
Hermitian conjugation

© CPT versus strong reflection + Hermitian conjugation
© Invariant interaction terms
@ Physical consequences

Andreas Fring CPT symmetry in quantum field theory ~ London Theory Institute Lecture 2/30



Motivation

@ The CPT theorem is based on the cornerstones of physics:
standard principles of quantum mechanics, Lorentz invariance,
energy positivity, causality
= test of these foundations

@ model building:

What kind of terms are permissible in a consistent Hamiltonian?
e quantum mechanics PT-symmetry
e quantum field theory CPT-symmetry
@ = models beyond the Standard Model with CPT -violation?
@ matter/anti-matter balance is broken in the universe

Google scholar articles with “CPT” in the title 13200
Google scholar articles with “CP violation in the title 10500
Google scholar articles with “time reversal” in the title 283000
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PT -symmetry in quantum mechanics Spectral analysis - Broken and unbroken P 7 -symmetry

PT-symmetry in quantum mechanics

Unbroken PT-symmetry guarantees real eigenvalues

@ PT-symmetry: PT: x——-X p—p i— —i
(P:x——x,p—=—-p;, T:X—=X,p— —p,i = —I)
@ PT is an anti-linear operator:

PTAP + pV) = N"PTO + " PTV ApeC
@ Real eigenvalues from unbroken P7T-symmetry:

[H,PT]=0 A PTOd=¢ =c=c" forHd=cd

@ Proof: c® = HO =HPTO =PTHO=PTecd =c*PTd=c"0
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PT -symmetry in quantum mechanics Spectral analysis - Broken and unbroken P 7 -symmetry

Spontaneously broken PT-symmetry gives conjugate eigenvalues
@ Spontaneously broken PT-symmetry:

[H,PT]=0 A PTO#0
@ Instead
[H,PT]=0 A PTd;=0,
H¢1 = &9 (D1 7‘[(1)2 = qu)g

= PTHP =PTe1dy = HPT O = E:PT¢1 = HPy = €:¢2
The eigenvalues of 4 and $, form a complex conjugate pair.

@ The point in parameter space where the PT-symmetry
spontaneously breaks is referred to as exceptional point.

PT-symmetry is only an example of an antilinear operator.
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PT -symmetry in quantum mechanics Spectral analysis - Broken and unbroken P 7 -symmetry

PT-symmetry versus spontaneously broken P7-symmetry
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real parts are solid lines, imaginary parts are dotted lines
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PT -symmetry in quantum mechanics Spectral analysis - Broken and unbroken P 7 -symmetry

H is Hermitian with respect to new metric
e Assume pseudo-Hermiticity:

h=nHy " =h' =0 Y Hy < Hiylp=nnH

d=no gl=9

= H is Hermitian with respect to the new metric
Proof:

(W |H®), = (WnPHO) = (7 wliPHin ™' ¢) = (¥ [nHn ™" 6) =
(W [hg) = (|6) = (nHn~"lo) = (HW[ng) = (HV[1P®)
= (HV|o®),

Using the same reasoning as in the Hermitian case:
= Eigenvalues of H are real, eigenstates are orthogonal
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PT -symmetry in quantum mechanics The classic example

The seminal classical example

H = %pz +x3(ix)¥  foreeR
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C.M. Bender, S. Boettcher, Phys. Rev. Lett. 80 (1998) 5243
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PT -symmetry in quantum mechanics Applications in optics

Nature Physics volume 11, page 799 (2015)

Helmholtz equation
in paraxial approximation:

82
/82 + ;ka—;ﬁ +kv(x)y =0
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PT -symmetry in quantum mechanics P T-book

PT Symmetry
in Quantum and

Classical

Physics

Hugh ¥ Jones, Sergii Kuzhel, Géza Lévai, and Roberto Tatea

N world scientific
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CPT-symmetry in quantum field theory The CPT theorem

CPT theorem

Every relativistic quantum field theory is invariant under a simul-
taneous change of particles into antiparticles (Charge conjuga-
tion C), reflection about some arbitrary point in space (Parity P)
and the reverse of the direction of time (Time reversal T).

.

Here we proof this for spin 0, 1/2 and 1 fields with covariant interaction
terms. The strategy of the proof is to first establish the invariance for
the field equations in the interaction representation and demanding
that the free field commutation relations are preserved. Subsequently
we investigate the invariance of covariant interaction terms.

J. Schwinger, Phys. Rev. 82 (1951) 914
G. Luders, Matematisk-Fysike Meddelelser 28.5 (1954).
G. Luders, Annals of Physics 2.1 (1957): 1-15.
W. Pauli, Il Nuovo Cimento (1955-1965) 6.1 (1957): 204-215.
R. Jost, Helv. Phys. Acta 30.409 (1957): 153.
F.J. Dyson, Phys. Rev. 110 (1958): 579.
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CPT transformations from field equations Field equations, commutation relations

Field equations, commutation relations (interaction representation)
Spin 0 field ¢(x) :

(0u0" = m?) 6(x) =0, (8,0" — m?) 6"(x) =0,
[6(x), 2(¥)] = [¢"(X), " (V)] = O, [¢(x), 6" (¥)] = —iA(x = )
Spin 1 field ¢,,(x) :
) = 0. (90" ) g(x) =0,
Fou(x) = 0'¢gu(x)=0
] = leu),er] =0,
| = i (g/w - m_2> A(x—y)

We use a Lorentzian metric: —gog = g11 = go2 = 933 = 1.
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Field equations, commutation relations

CPT transformations from field equations

Field equations, commutation relations (interaction representation)
Spin 1/2 field ¥(x) :
(wﬁ”ﬂtm) v(x) = 0, () (70" —m) =0,
{a(X¥),¥s(y)} = {w() s(¥)} =0,
{va(X),0s()} = 1(7,0" —m) AKX —y)
where  _ .
b(x) = =it (x)
e} = 20w, W=7 7i=w (k=1,2,3),
Y5 = IYoV172735 {75,%} =0 )

further properties
A(X, 1) = A(=X, t) = —A(X, —t) = —A(=X, —t)

) i Ak o
e.g.spin0:  Ax—y)= ~@p k—oe’k 5= sin [ko(X0 — ¥o)]
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CPT transformations from field equations Parity P

Parity P

Reflect entire physics about an arbitrary point in space, e.g. the origin
Po(X, )P = npo(-=X,1), PO (X, )P~ = npd™ (=X, 1),
Pok(X, )P~ = —fppk(=X, 1), Pok(X, )P~ 1=—np90 (=%, 1),
Poo(X, P = fppo(—X. 1),  Pep(X, P! = fijpgs (=X, 1),
PY(EOP™T = dpyed(—X, 1), PHE P = —ijpd (=X, thyo
with

PP =1 |np| = lilp| = |itp| = 1

@ adointness is preserved
@ for Hermitian fields we have np = +1
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CPT transformations from field equations Charge conjugation C

Charge conjugation C
Change particles to antiparticles, operators transform to their adjoints

Co(x, t)c! necd* (X, 1), Co*(X, t)C" = ngo(X, 1),
Co (X, )T = fepn(X.1), Col (X, )CT = fgel (X, 1),
Cy(X, )" = nCYT(X, 1), CY(X, )C~ " = —iayT(X, 1) CT,
with

CCi=1, Cy=-,C, Cl=-C
Inel = licl = lincl =1 )
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CPT transformations from field equations Time reversal T

Time reversal T
Reverse time of each physical state, velocities are reversed (Wigner)

To(X DT 1 = nre(X, 1), To* (X, 0T =n1o*(X, -1),
Tok(XK 0T = frep(X, 1), Tor(X, 0T " = ifreip(X, 1),
TooX, )T 1 = —freo(X—1),  Teo(X, )T 1 = —ifrep(X, —1),
TeE DT = 9rTy(X,—t),  TOEOT ' =55d(X,-0T,

TT' =1, AlT=Ty,, T'=T TAT '=x XeC
Inr| = 107l = el =1

Combined CT:
CyiC ' ==y, 7 =Ty, T "= CTy,,(CT) " = —
Therefore we may set C7 := 5

I

16/30



CPT transformations from field equations Combined CPT transformation

Simplified notation

Instead of
CPTO(X)CPT ' =CPO(x)CP~' =cO"(x)c~ " = 0" (x)

we write
O(x) L 0'(x) 25 0"(x) -5 0"(x)

and we replace
CPTOX)CPT ' = 0"(x)

by
o(x) L 0"(x)
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CPT transformations from field equations Combined CPT transformation

Combined CPT transformation

R - Co n o n oany o
t —Arfippo(—X, —t) — —ArfipficPo(—X, —t)
- T - P oo S

¢(X7 t) — nTTw(Xa _t) — nTnPTVO@Z)(_Xv _t)
C o v o - -
— N7ipicCTYoY" (—X, —t)

Therefore (with the same logic for the conjugate fields)

6(x) % nrnpncs(—x) 6" () L nrnpncd(—x)

0u(¥) T% —firiphicel(—x) 050 CE —friphiceu(—x)

$(x) % iritplicrs o (—X) D) X et v (—x) 7570
A SEL px
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CPT transformations from field equations Strong reflection

Strong reflection

Simultaneous reflection of time, space and the reversal of the order of
the field operators (Pauli)

¢(}7 t) — QZS(—)a _t)7 (b*(i, t) - (Z)*(—X, t)?
@M()?a t) — _SDM(_)_C _t)v ()OZ()_C t) - _90:, —X, _t)v
7/1()?7 t) — i’75¢(_}¢ _t)> 177)*(}7 t) - ILZJ*(_Xa _t)fYSa

@ Interaction terms must be symmetrized with respect to Bose field
and antisymmetrized with respect to Fermi field,
i.e. Wick ordering ::is applied

@ strong reflection is only defined for the operator algebra

@ strong reflection can not be applied on the Hilbert space
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CPT transformations from field equations Hermitian conjugation

Hermitian conjugation

Simultaneously conjugate field operators, reverse their order and
conjugate c numbers A — \*, A € C

P(X, 1) < ¢ (X, 1),
So,u()?a t) < 90;()?7 t),
(X, 1) < (X, 1) = =i T (X, o
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CPT transformations from field equations Strong reflection + Hermitian conjugation

Strong reflection + Hermitian conjugation

¢(;7 t) _>¢*(_}7_t)’ qﬁ”‘()?, t) _>¢(_}7_t)7

spp()_()’ t) - _SOZ(_}7 _t)a SDZ()_()’ t) - _SOM(_)_(: _t)a

»(X, 1) = 15709 (=X, 1), P(X, 1) = YT (=X, )50,
A EL \

@ The order of all operators remains the same.
@ The combined transformation is antilinear since A — \*.

@ The combined transformation can be applied to the operator
algebra and the Hilbert space.
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CPT transformations from field equations CPT versus Strong reflection + Hermitian conjugation

CPT versus Strong reflection + Hermitian conjugation

We observe that the combined CPT transformation coincides exactly
with the combined transformation of strong reflection + Hermitian
conjugation when we take

nrnpnc = Hrfipfic = Nriplc =1
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CPT transformations from field equations Invariant interaction terms

Interaction terms

Hermitian interaction terms must therefore transform as

[ H(X, 1) CL H(-X%,—1)

Consider Lorentz invariant terms, e.g. for spin 1/2-operators

’(ZQ,Z), I&7M¢7 &’Y;ﬂzﬂﬁa i&7u75¢7 ’1}75%
Examples:
Tensors ¢, ., (x) composed of 9,¢(x) and ¢, (x) transform as

CPT
Sy (X) = (1)L, (—X)
Bilinears of Dirac fields transform as
v t CPT
Px)(x) = [x)$(x)]
¥(— )w( X)
CPT symmetry in quantum field theory ~ London Theory Institute Lecture 23/30
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CPT transformations from field equations Invariant interaction terms

D)0w(x) = [iD0)00(x)]" TE i (—X) 15707575708 T (—X)
= —ith(—X) 10U (~X)

iD(X)yst(x) = W( Y0t (¥)] " 5 —ipT(—x) 15707575708 (—X)
= ip(—X)vs1h(—X)

What about separate transformations?

@ QED and QCD are invariant under the separate C, P and T
transformations.

@ Chiral interactions violate separate C and P transformations, but
are invariant under the combined CP transformation

Consider the chiral interaction term:

Leh = 77}'7;;(1 — 75) A"
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CPT transformations from field equations Invariant interaction terms
Charge conjugation (ignore the arguments)

Dy A S —nengyTCly, CPTA!

= —T(—])P A
= Uy, WA"

Dy s0A S5 e TCly, s CYTA
= —¢TCly,CClysCYT A

—pT (=T L) A

= P57, A

= — Uy, 75 A

therefore c
»Cch 7L> »Cch
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CPT transformations from field equations Invariant interaction terms

Parity transformation

by, oA L sl et(—AY)

= =707 YA

= Py, YA!

Py, Vs A R —npNpY Y0y, Y5 Y0t (—AY)

= VY0707, VsV A”

= _wfy,u,’YSwAM

therefore
P
Lch 7'/‘> Ech

But op
Leh — Loh
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Physical consequences Physical consequences

CPT invariance, CP violation

CPT invariance

Lee and Yang?
@ Particles and antiparticles have equal lifetimes and masses.
@ equal lifetimes = either CP or CPT are valid
@ different lifetimes =- both CP and CPT are violated

4Lee, T.-D., Yang C.-N. "Question of parity conservation in weak
interactions." Physical Review 104.1 (1956): 254.

CP violation
Neutral Kaons: K, K® mesons have spin 0 and opposite strangeness

K o o (64 + ic2)

1
KO -= 7\[

=0 1

K™ ' ¢go = NG (¢1 — i)
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Physical consequences Physical consequences

But these states are not C'P eigenstates:

CPoko = Pgo CPdxo = dxo

Therefore define:

1

’ .
Pyo = NG (dko + Do) P = \é (ko — Pio)

such that
CP¢K1O = ¢K10 CP¢K§ == _¢K20

K mesons decay into = mesons for which we have

CPy (7T+7T_) = (7r+7r_) CPy (7r+7r_7r0> = <7T+7T_7T0>
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Physical consequences Physical consequences

Therefore the following processes respect CP invariance

K1O S ata~
K20 — ata 70

However, in an experiment reported in [Christenson, J. H., et al.

"Evidence for the = Decay of the K? Meson." Physical Review Letters

13.4 (1964): 138] the authors found the following two pion decay
K20 S atr~

which violates the CP-invariance.
Assuming that CP7T holds this implies that this process is also not
invariant with respect to time reversal 7.
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