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Abstract

In this lecture, we present a few elemen-
tary facts about Fermi surfaces, then discuss
how to find interesting “non-Fermi liquids” via
the AdS/CFT correspondence. We study differ-
ent backgrounds (e.g. AdS, BTZ, and Reissner-
Nordstrom), and the wave-equation of probe fields
on top of these geometries. We discuss how to
compute boundary two-point functions by solving
the bulk equations and then explore the results.

https://youtu.be/5IAx2ca_WU4


(Holographic) Fermi surfaces

Exercises

1) What is 1 eV in kelvins? (This is considered to be a UV scale in condensed matter

physics.)

2) AdSd can be defined by the (universal cover of the) hyperboloid

X2
−1 +X2

0 −
d∑
i=1

X2
i = L2

where L is the radius of AdS. The equation is solved by

X−1 =
Lt

z
, X0 =

z

2
+
L2 + ~x2 − t2

2z

Xi =
Lxi

z
for i = 1, . . . , d− 1

Xd =
z

2
− L2 − ~x2 + t2

2z
(t, z, ~x) are the Poincaré patch coordinates.

Show that the induced metric is given by

ds2 = L2 dz
2 − dt2 + d~x2

z2

3) Show that the metric

ds2 = L2 dz
2 − dt2 + d~x2

z2

satisfies Einstein’s equations with a negative cosmological constant Λ. How is Λ related

to L? For the calculations, I recommend using Mathematica with Matt Headrick’s dif-

ferential geometry package that you can find at:

https://people.brandeis.edu/~headrick/Mathematica/index.html

4) Show that the planar AdS-black hole metric

ds2 =
r2

L2
(−f(r)dt2 + d~x2) +

L2

r2

dr2

f(r)
(1)

with f(r) = 1−
(
r0
r

)d
satisfies Einstein’s equations with a negative cosmological constant.

[Note that the formula in the video has a typo: it should be f in the denominator, not

f 2.]
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5) Compute the temperature of (1) by rotating it into Euclidean signature and demanding

that the geometry does not have a conical singularity at r = r0.

6) The wave equation for a scalar field ϕ(T,X, ρ) = e−ikTT+ikXXϕ(ρ) in the BTZ geometry

turns out to be

ϕ′′(ρ) + 2 coth 2ρϕ′(ρ) +

(
k2
T

sinh2 ρ
− k2

X

cosh2 ρ
−m2

)
ϕ(ρ) = 0.

Solve the wave equation, find the ingoing solution at the horizon, and compute the re-

tarded 2-point function by expanding the ingoing solution in the UV. Hint: a coordinate

change z = tanh2 ρ might help solving the equation.

7) The result should be

GR(kT , kX) ∝
Γ
(

∆+

2
− ikT +kX

2

)
Γ
(

∆+

2
− ikT−kX

2

)
Γ
(

∆−
2
− ikT +kX

2

)
Γ
(

∆−
2
− ikT−kX

2

) ,
where ∆± = 1±

√
1 +m2. Plot the function on the complex kT plane at a fixed value for

kX . Are all the poles on the lower-half plane as required for a retarded Green’s function?

8) Show that at T = 0 the near-horizon geometry of the planar AdS-Reissner-Nordström

black hole is AdS2 × Rd−1. [Note that the formula in the video has a typo: it should be

f in the denominator, not f 2.]

9) Using Mathematica, numerically compute the boundary retarded Green’s function of an

operator dual to a charged scalar field in the AdS-Reissner-Nordström geometry. (You

can set d = 3 so that the geometry is asymptotically AdS4.) Can you find poles near

ω = 0 and k ∼ O(1)? Since bosons do not form a Fermi surface, what do these findings

mean?

10) Compute the retarded Green’s function of a charged scalar field in the (0+1)-dimensional

“CFT dual” to the AdS2 geometry

ds2 =
L2

2

ζ2
(−dτ 2 + dζ2) Aτ =

a

ζ
(2)

where (τ, ζ) are the AdS2 coordinates, Aτ is the only non-zero component of the gauge

field, a is a constant, and L2 is the AdS2 radius.

2



For thermal QFT you can consult the (old) book by Fetter-Walecka: “Quantum Theory

of Many-Particle Systems” or the book by Mahan: “Many-particle physics”.

For the Lorentzian AdS/CFT prescription see [1]. A comprehensive “AdS/CMT” review

is in [2]. The BTZ black hole is described in [3, 4]. For holographic Fermi surfaces, see

[5, 6, 7].
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