LonTI Lecture on the Superconformal Index

Dr Costis Papageorgakis

22nd of March 2021

Consider the following assignment of quantum numbers for the Poincaré supercharges of the 4D $\mathcal{N}=2$ SCA:

\mathcal{Q}	$SU(2)_1$	$SU(2)_2$	$SU(2)_R$	$U(1)_r$	$\delta = 2\{\mathcal{Q}, \mathcal{Q}^{\dagger}\}$	Commu	ting δs
Q_{1-}	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$\delta_{1-} = \Delta - 2j_1 - 2R - r$	$\delta_{2+}, \tilde{\delta}_{1-1}$	$_{-},~~ ilde{\delta}_{1\dot{-}}$
Q_{1+}	$\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$\delta_{1+} = \Delta + 2j_1 - 2R - r$	$\delta_{2-}, \tilde{\delta}_{1-}$	$_{-},~~ ilde{\delta}_{1\dot{-}}$
\mathcal{Q}_{2-}	$-\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{1}{2}$	$\delta_{2-} = \Delta - 2j_1 + 2R - r$	$\delta_{1+}, \tilde{\delta}_{2+}$	$_{-},~~ ilde{\delta}_{2\dot{-}}$
Q_{2+}	$\frac{1}{2}$	0	$-\frac{1}{2}$	$\frac{1}{2}$	$\delta_{2+} = \Delta + 2j_1 + 2R - r$	$\delta_{1-}, ilde{\delta}_{2-1}$	$_{-},$ $ ilde{\delta}_{2\dot{-}}$
$\widetilde{\mathcal{Q}}_{1\dot{-}}$	0	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\delta_{1\dot{-}} = \Delta - 2j_2 - 2R + r$	$\widetilde{\delta}_{2\dot{+}}, \delta_{1\dot{-}}$	δ_{1-}
$\widetilde{\mathcal{Q}}_{1\dot{+}}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$	$\tilde{\delta}_{1\dot{+}} = \Delta + 2j_2 - 2R + r$	δ_2 . δ_1	δ_{1-}
$\widetilde{\mathcal{Q}}_{2\dot{-}}$	0	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\tilde{\delta}_{2\dot{-}} = \Delta - 2j_2 + 2R + r$	$\left egin{array}{ccc} ilde{\delta}_{1\dot{+}}, & \delta_{2\dot{+}} \end{array} ight.$	δ_{2-}
$\widetilde{\mathcal{Q}}_{2\dot{+}}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$\tilde{\delta}_{2\dot{+}} = \Delta + 2j_2 + 2R + r$	$\delta_{1\dot{-}}, \delta_{2\dot{-}}$	δ_{2-}

1. Evaluate the single-letter index over the free vector multiplet and the free (half)hypermultiplet. The letters contributing to the " $\mathcal{N}=2$ index" with respect to $\tilde{\mathcal{Q}}_{1\dot{-}}$, as defined in the lecture, comprise:

Letters	Δ	j_1	j_2	R	r
ϕ	1	0	0	0	-1
$\lambda_{1\pm}$	$\frac{3}{2}$	$\pm \frac{1}{2}$	0	$\frac{1}{2}$	$-\frac{1}{2}$
$ar{\lambda}_{1\dot{+}}$	$\frac{\frac{3}{2}}{\frac{3}{2}}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$
$ar{F}_{\dot{+}\dot{+}}$	2	0	1	0	0
$\partial_{-\dot{+}}\lambda_{1+} + \partial_{+\dot{+}}\lambda_{1-} = 0$	$\frac{5}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$
q	1	0	0	$\frac{1}{2}$	0
$ar{\psi}_+$	$\frac{3}{2}$	0	$\frac{1}{2}$	0	$-\frac{1}{2}$
$\partial_{\pm+}$	1	$\pm \frac{1}{2}$	$\frac{1}{2}$	0	0

Then carry out the plethystic exponentials for each case.

- 2. Define the " $\mathcal{N}=2$ index" with respect to the $\tilde{\mathcal{Q}}_{2\dot{-}}$ supercharge. Argue that this gives the same answer as the one defined with respect to $\tilde{\mathcal{Q}}_{1\dot{-}}$ for 4D $\mathcal{N}=4$ SYM with U(N) gauge group.
- 3. Write the Schur limit of the $\mathcal{N}=2$ index defined in the lecture as

$$\mathcal{I}_S = \text{Tr}(-1)^F \rho^{2(\Delta - R)}$$

and evaluate it over the free hypermultiplet and vector multiplet.

4. The short multiplets of the 4D $\mathcal{N}=2$ SCA that contribute to the index as defined in the lecture are:

$$\begin{split} \mathcal{I}_{\overline{\mathcal{C}}_{R,r(j_{1},j_{2})}} &= -(-1)^{2(j_{1}+j_{2})} \tau^{2+2R+2j_{2}} \sigma^{j_{2}-r} \rho^{j_{2}-r} \frac{(1-\sigma\rho)(\tau-\sigma)(\tau-\rho)}{(1-\sigma\tau)(1-\rho\tau)} \chi_{2j_{1}} \left(\sqrt{\frac{\sigma}{\rho}}\right) \\ \mathcal{I}_{\hat{\mathcal{C}}_{R(j_{1},j_{2})}} &= (-1)^{2(j_{1}+j_{2})} \frac{\tau^{3+2R+2j_{2}} \sigma^{j_{1}+\frac{1}{2}} \rho^{j_{1}+\frac{1}{2}} (1-\sigma\rho)}{(1-\sigma\tau)(1-\rho\tau)} \left(\chi_{2j_{1}+1} \left(\sqrt{\frac{\sigma}{\rho}}\right) - \frac{\sqrt{\sigma\rho}}{\tau} \chi_{2j_{1}} \left(\sqrt{\frac{\sigma}{\rho}}\right)\right) \\ \mathcal{I}_{\overline{\mathcal{E}}_{r(j_{1},0)}} &= (-1)^{2j_{1}} \sigma^{-r-1} \rho^{-r-1} \frac{(\tau-\sigma)(\tau-\rho)}{(1-\sigma\tau)(1-\rho\tau)} \chi_{2j_{1}} \left(\sqrt{\frac{\sigma}{\rho}}\right), \\ \mathcal{I}_{\overline{\mathcal{D}}_{0(j_{1},0)}} &= \frac{(-1)^{2j_{1}} (\sigma\rho)^{j_{1}+1}}{(1-\sigma\tau)(1-\rho\tau)} \times \\ &\qquad \qquad \left(\left(1+\tau^{2}\right) \chi_{2j_{1}} \left(\sqrt{\frac{\sigma}{\rho}}\right) - \frac{\tau}{\sqrt{\sigma\rho}} \chi_{2j_{1}+1} \left(\sqrt{\frac{\sigma}{\rho}}\right) - \tau \sqrt{\sigma\rho} \chi_{2j_{1}-1} \left(\sqrt{\frac{\sigma}{\rho}}\right)\right) \\ \mathcal{I}_{\mathcal{D}_{0(0,j_{2})}} &= \frac{(-1)^{2j_{2}+1} \tau^{2j_{2}+2}}{(1-\sigma\tau)(1-\rho\tau)} (1-\sigma\rho) \; . \end{split}$$

The subscripts denote various short superconformal multiplets of the $\mathcal{N}=2$ SCA, satisfying particular shortening conditions and labelled by the quantum numbers of the superconformal primary. The Schur polynomial $\chi_{2j}\left(\sqrt{\frac{\sigma}{\rho}}\right)$ gives the character of the spin j representation of SU(2). Use the above information to write down all possible contributions in the Coulomb and Schur limits of the index.

5. Write the $\mathcal{N}=2$ index that was defined in the lecture as a path integral on $S^3\times S^1$ with periodic boundary conditions for all fields.

6. The contribution of the $\mathcal{N}=4$ vector multiplet to the " $\mathcal{N}=4$ index" with some choice of fugacities is

$$i_{\mathcal{N}=4}^{\text{vec mult}} = \frac{t^2 \left(v + \frac{1}{w} + \frac{w}{v} \right) - t^3 \left(y + \frac{1}{y} \right) - t^4 \left(w + \frac{1}{v} + \frac{v}{w} \right) + 2t^6}{\left(1 - t^3 y \right) \left(1 - \frac{t^3}{y} \right)} \ .$$

Carry out the gauge integration at large N to show that the index for U(N) 4D $\mathcal{N}=4$ SYM reproduces the index over free IIB supergravitons on $AdS_5 \times S^5$, given by

$$\mathcal{I}^{grav} = \prod_{n=1}^{\infty} \frac{(1 - t^{3n}/y^n) (1 - t^{3n}y^n)}{(1 - t^{2n}/w^n) (1 - v^n t^{2n}) (1 - t^{2n}w^n/v^n)}.$$

You can use that $\chi_{adj}(U) = \text{Tr}(U^{\dagger})\text{Tr}(U)$ and $[dU] = \frac{1}{(2\pi)^N N!} \prod_i d\lambda_i \prod_{i < j} 4\sin^2\left(\frac{\beta(\lambda_i - \lambda_j)}{2}\right)$, where $U \equiv e^{i\beta\alpha}$ and λ_i $(i = 1, \dots, N)$ the eigenvalues of α .