LonTI lectures: on SYK and the emergence of spacetime

Lecture 2 : on JT gravity and $\cap A S_{2}$

* Nikolay Gromou agreed to record a lecture on syk model using Mathematica.

Very brief recap: * Holography $m 2 d$ is interesting by its own.

* Near-extremal black holes in higher dimensions have a nearhorizon

Lines in T
specific neat!!
geometry of $A d S_{2} \times S^{2}$.

* The effective action in $2 d$ is that of Jackiw-teitelboim gravity (JT)
TODAY: * We will study JT gravity theory.
* We will show it reduces to a boundary theory.
* We will also show its thermodynamics reproduce the linear -in-T specific heat.
(2.1) JT gravity action: (we will work m

$$
S_{J T}=-\frac{\phi_{0}}{1 G \pi G_{N}}\left[\int_{\mu} d^{2} x \sqrt{g} R+2 \int_{\partial M} \sqrt{h} K\right]
$$

$$
-\frac{1}{16 \pi 6 N}\left[\int_{M} d^{2} x \sqrt{g} \phi(R+2)+\int_{\partial M} \sqrt{n} \phi K\right]
$$

A few comments about this action:
(1) The obvious one: it is 2-dimensional. It has a metric $g_{\mu v}$ and a scalar field ϕ, that we will call the dilator.
(2) The first term is topological (proportional to the Euler characteristic of M).
(3) Inspired in higher-d we want to study $\Phi=\phi_{0}+\phi$, where $\phi_{0} \gg \phi$ (JT is the leading correction to pure AS_{2}).
(4) We will study the theory in Euclidean signature (I might make a few comments about the Lorentzian theory at the end) \rightarrow why? * Thermodynamics

* Correletors easier to compute.
* Lorentzian correlations by analytic continuation.

The problem is not well-defined without imposing boundary conditions (Dirichlet): \rightarrow dimensionfell constant!!

$$
\left.\phi\right|_{b a y}=\phi_{b}=\frac{\tilde{\phi}}{\varepsilon} ;\left.h\right|_{b d y}=\frac{\tilde{u}^{2}}{\varepsilon^{2}}
$$

* Now let's look at the equations of motion for the metric and the dilation:

$$
\begin{equation*}
\frac{\delta}{\delta \phi}: R+2=0 \Rightarrow R=-2 \tag{III}
\end{equation*}
$$

huge
simplification
in $2 d$
\downarrow
the Metric
(This wont change even if we add is locally matter, given it does not interact with ϕ) AdS 2.

$$
\frac{\delta}{\delta h}: \frac{\frac{1}{8 \pi G}\left(\nabla_{\mu} \nabla_{r} \phi-g_{\mu \nu} \nabla^{2} \phi+g_{\mu \nu} \phi\right)}{T_{\mu \nu}^{\phi}=0}=0
$$

* Comment on path integral formulation:
(we are really mtegreting out the dilation)

$$
\begin{aligned}
Z= & \int D g D \phi \underbrace{e^{-S[g, \phi]}} \quad \begin{array}{l}
\text { if you properly } \\
\text { chose the contos } \\
\text { ot integration }
\end{array}) \\
& \int D g \int D \phi e^{-i \int \phi(R+2)}=\int D g \delta(R+2)
\end{aligned}
$$

* $R=-2 \Rightarrow$ geometry is Euclidean AdS_{2} :

We will use two sets of coordinates to describe AdS $_{2}$. Both cover the full disk:

- $\tau_{\text {rindler }} \rightarrow-i \tau_{\text {minder }}$

$$
\begin{gathered}
d S^{2}=d \rho^{2}+\sinh ^{2} \rho d z^{2} \\
-t_{\text {Poincare } \rightarrow i i} t_{\text {teclidran }} \\
d s^{2}=\frac{1}{z^{2}}\left(d t^{2}+d z^{2}\right)
\end{gathered}
$$

We will see in whet sense this describes a $2 d$ (IV) black hole.

For now, we will use Poincare coordinates
In these coordinates: $\phi=\frac{\alpha+\gamma t+\delta\left(t^{2}+z^{2}\right)}{z} \leadsto \begin{gathered}3 \text { interytition } \\ \text { cons }\end{gathered}$
Here is where boundary conditions become important.
As we go° to the boundary $z \rightarrow 0 \Rightarrow \begin{aligned} & \begin{array}{l}\phi \\ h\end{array} \rightarrow \infty\end{aligned}$ $h \rightarrow \infty$.

But we said we wanted $\phi_{0} \gg \phi$ (Note that
\Rightarrow the solution to this is imposing an external the boundary conditions and cutting parameter) off a piece of spacetime
(In the end there will be ε-independent ftitros)
*) Implementing the boundary conditions

- How do we fix the length of the body?

\Rightarrow Assuming $z>0$, this gives

$$
\overline{z(u)}=\varepsilon \sqrt{t^{\prime}(u)^{2}+z^{\prime}(u)^{2}}=\overline{t^{\prime}(u)+v\left(\varepsilon^{3}\right)}
$$

~) So now all the theory depends on just one function $t(u)$.

Comment on symmetries:

* for any $t(u)$, the E-H part of the action would give the same result (we said it is topological)
\Rightarrow this can be interpreted as a full symmetry under reparametrisations of $u \rightarrow f(u)$
Most of this tale you from one curve to another

$$
\text { g}\left.\right|_{\text {boy }}=\frac{1}{\varepsilon^{2}} \leadsto \frac{d u^{2}}{z^{2}} \leadsto \text { change } u \rightarrow \text { basically change }
$$

the bey cons \rightarrow change the
curve
However this is not the case for all curves: translat; and rotations of a fixed shape around the hyperbolic disk do not change the pert we are cutting.

$$
t(u) \rightarrow \frac{a t(u)+b}{c t(u)+d}, \partial d-b c=1
$$

form an SL $(2, \mathbb{R})$ Subgroup of all reparametrisations and do not change the body.
\Rightarrow All curves that cut the hyperbolic disk spontaneously break the reparametrisation symmetry down to $\operatorname{SL}(2, \mathbb{R})$
(comment on $t(u)$ being a Goldstone mode)
l_{\rightarrow} they all have the same action
(2.2) the schwarzan theory

* What is the action that rules the behaviour of $t(u)$??
\rightarrow Here is where the JT action appeared wi a term wi dilator which will break the reparemetrisation symmetry explicitly and give 2 finite action to $t(u)$.
* So what do we do? we integrate ort ϕ

$$
\begin{aligned}
& \Rightarrow S_{I T}=-\frac{1}{16 \pi \sigma_{N}}[\underbrace{\int d^{2} x \sqrt{g}(R+2) \phi}_{\text {just says the } R=-2 \text { \& }}+2 \int_{\partial M} \sqrt{n} \phi_{b} k] \\
& \text { we are lett with } \\
& S_{J T}=-\frac{1}{8 \pi G_{N}} \int_{\partial M} \phi_{b} K=-\frac{1}{8 \pi G_{N}} \int_{\partial M} \frac{d u}{\varepsilon} \frac{\tilde{\Phi}}{\varepsilon} K
\end{aligned}
$$

* What is $K ? ? \rightarrow$ curvature as seen from M
\rightarrow Usually $K_{\underset{i j}{a} \rightarrow \text { orthogonal }}^{\underset{\sim}{j} \text { sure }}$. Usually the trace $K^{a} i i$.
\rightarrow Matt Headrick: "compendium of useful formulas" Abstract: Almost everything I know
Remember we had $\xi=\{t(u), z(u)\}$ This defines a tangent vector $T^{a}=\left(t^{\prime}, z^{\prime}\right)$

$$
\begin{array}{r}
\quad \begin{aligned}
& \text { note that } n^{a} \\
& \text { is normalised }
\end{aligned} n^{a}=\frac{z}{\sqrt{t^{\prime 2}+z^{2}}}\left(-z^{\prime}, t^{\prime}\right) \\
\Rightarrow \\
K=-\frac{h_{a b} T^{a} T^{c} \nabla_{c} n^{b}}{h_{a b} T^{2} T^{b}}=\mathbb{B}^{a}
\end{array}
$$

(try using difffeo.m package from Matt Headrick aswell) The result for any curve E in Poincare coordinates is:

$$
K=\frac{t^{\prime}\left(t^{\prime 2}+z^{\prime 2}+z^{\prime} z^{\prime \prime}\right)-z z^{\prime} t^{\prime \prime}}{\left(t^{\prime 2}+z^{\prime 2}\right)^{3 / 2}}
$$

But we know that given our boundary conditions $Z(u)=\varepsilon t^{\prime}(u)+\ldots$, so we can evaluate K OS a function of $t^{\prime}(u)$ only in the suall E limit.

The result is:

$$
K=1+\varepsilon^{2} \underbrace{\frac{2 t^{\prime} t^{\prime \prime \prime}-3 t^{\prime \prime 2}}{2 t^{\prime 2}}}_{\operatorname{sch}(t(u), u) \rightarrow \begin{array}{c}
\text { Schwarzian } \\
\text { derivative }
\end{array}}+\vartheta\left(\varepsilon^{4}\right)
$$

So now we can go back to the action

$$
\left.S_{S T}=-\frac{1}{8 \pi \sigma_{w}} \int^{0} \frac{d u}{\varepsilon} \frac{\delta(u)}{\varepsilon}\left(1+\varepsilon^{2} \operatorname{Sch}(t(u), u)\right)\right)
$$

For now let's assume that $\tilde{\phi}(u)=\tilde{\phi}$ constant

$$
\begin{aligned}
& \text { But not physical } \\
& \text { divergent } \Rightarrow \text { we can subtraded }
\end{aligned}
$$ by local counter-

This is the first important result of the day
Some comments: * Gravity theory becomes a bdy thy.

$$
a d-b c=1 \quad * \operatorname{sch}(t(u), u)=\operatorname{sch}\left(\frac{a t(u)+b}{c t(u)+d}, u\right)
$$

It is the lowest derivative local expression that is

$$
\begin{aligned}
& \Rightarrow S_{J T}=-\frac{\Phi}{8 \pi \sigma_{N}} \int d u\left(\frac{1}{\varepsilon^{2}}+\operatorname{Sch}(t(u), u)\right) \\
& \text { as } E \rightarrow 0 \Rightarrow \text { we can subtraded } \\
& \text { terms } \\
& \Rightarrow S_{S T}=\cdots \int \phi_{b}(k-1) \\
& \Rightarrow S_{J T}=\frac{-\tilde{\phi}}{8 \pi G_{N}} \int d u \operatorname{Sch}(t(u), u)
\end{aligned}
$$

invariant under $S L(2, \mathbb{R})$ transformations.

* Now we can look for seddle-point solutions to this theory.
L the com is: $\frac{[S(t(u), u)]^{\prime}}{t^{\prime}}=0$

$$
=\left[\frac{1}{t^{\prime}}\left(\frac{t^{\prime \prime}}{t^{\prime}}\right)^{\prime}\right]^{\prime}=0 \sim \begin{aligned}
& \text { Remember the } \\
& \text { three integrection } \\
& \text { constants of the } \\
& \text { dilation!! }
\end{aligned}
$$

and butt thy and bulk same information
So we need Solutions with constant schwarzion. (of course SL($2, \mathbb{R}$) transformations will work but thy are not physical, more like redundancies).
To find different solutions we use a property of the Sch derivative under composition

$$
\Rightarrow S(f \circ g, t), \quad g^{\prime 2} S(f, g)+S(g, t)
$$

Now if $t(u)=\tan \frac{\tau(u)}{2} \rightarrow$ note this takes us from Poincare to Ringlet coordinates.

$$
\Rightarrow S(t, u)=\frac{1}{2} \tau^{\prime}(u)^{2}+S(\tau(u), u)
$$

But now $\tau(u)$ goes from $[-\pi, \pi]$ so has periodicity $2 \pi \Rightarrow$ they describe nice thermal solutions

It is easy to \sec that $\tau(u)=\frac{2 \pi}{\beta} u$ is a
Solution to $S(t, u)=$ constant !! (It's not that easy to see that up to $\operatorname{SL}(2, \mathbb{R})$ transformations it is the only solution).
So what's the solution that we found:

$$
\tau=\frac{2 \pi}{\beta} u \text { is } d
$$ circle close to the geometrical body.

This is what we call a Euclidean black hole!! How do blade holes look in Euclidean signature??

$$
d S^{2}=-f(\sigma) d t^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega_{2}^{2}, \quad f\left(r_{n}\right)=0
$$

Now we wide rotate time $\rightarrow d S_{\epsilon}^{2}=f(r) d t_{\epsilon}^{2}+\frac{d r^{2}}{f(r)}+r^{2} d \Omega_{2}^{2}$ Note that we still have a divergence at $r=r_{n}$ \& $r=0$. But now let's the a look at the geometry close to the horizon:

$$
\rho=2 \sqrt{\frac{r-r_{n}}{f^{\prime}\left(r_{n}\right)}} ; \theta=\frac{t_{\epsilon}}{2} f^{\prime}\left(r_{n}\right)
$$

$$
\begin{equation*}
\Rightarrow d s^{2} \approx \rho^{2} d \theta^{2}+d \rho^{2}+r_{n}^{2} d \Omega_{2}^{2}+\ldots \tag{xi}
\end{equation*}
$$

This is like the plane in poler coordinates if θ has the right periodicity.
If θ does not have period $2 \pi \Rightarrow$ conical singularity

$$
\begin{aligned}
\Rightarrow \theta & \leadsto \theta+2 \pi \\
t_{\epsilon} & \leadsto t_{\epsilon}+\beta=\frac{4 \pi}{f^{\prime}\left(r_{n}\right)}=\frac{1}{T}
\end{aligned}
$$

\Rightarrow so the geometry ends smoothly at $\rho=0$

$$
r=r_{h}
$$

00
The agar is the \rightarrow only sees up to \rightarrow and hes a Euclidean BH the horizon thermal cycle that is contractible
\Rightarrow The hyperbolic disk is the AdS 2 version of this and the thermal cycle reduces smoothly to zero at the center of the disk \Rightarrow the solution we found is a Euclidean BA solution.
(2.3) Thermodynamics

* On-shell action gives the partition function of the bey theory at finite temperature

$$
z(\beta)=e^{- \text {Sgrev }}
$$

But this is very simple to evaluate at the Saddle point:

$$
S_{g r a v}=S_{s c h}=-\frac{1}{8 \pi \sigma_{N}} \int_{0}^{\beta} d u \tilde{\phi}(u)\left(S(\tau, u)+\frac{1}{2} \tau^{\prime}(u)^{2}\right)
$$

But $\tau(u)=\frac{2 \pi}{\beta} u$

$$
\begin{aligned}
& \Rightarrow S_{\text {sch }}=-\frac{\tilde{\Phi}}{8 \pi \sigma N} \int_{0}^{B} d u\left(\frac{2 \pi}{B}\right)^{2} \cdot 1=-\underbrace{\frac{4 \pi^{2} \delta^{\circ}}{8 \pi 6 N}}_{C} \frac{1}{B} \\
& \text { Including the topolegizal term: }
\end{aligned}
$$

$$
S_{g r a v}=-S_{0}-e / \beta
$$

\Rightarrow Now we identify $\log z \equiv-\beta F$

$$
\begin{aligned}
\Rightarrow S_{t h} & =\left(1-\beta \partial_{\beta}\right) \log z=S_{0}+c / \beta \\
c(\beta) & \equiv \beta^{2} \partial_{\beta}^{2} \log z=c / \beta
\end{aligned}
$$

\Rightarrow We recover the linear in T behaviour. Note this is only possible due to the
appearance of $\tilde{\phi}$: dimensionful parameter!]
(2.4) An action for the fluctuations when can ask what happens if we perturb a little away from the saddle (assume $\beta=2 \pi$)

$$
\begin{gathered}
\Rightarrow \quad \tau(u)=u+\varepsilon(u) \quad \omega \mid \varepsilon \ll 1 \\
\begin{aligned}
& \Rightarrow S(\tau, u)+\frac{\tau^{\prime 2}}{2}= \frac{1}{2}+\varepsilon^{\prime}+\varepsilon^{\prime \prime} \\
&+\left(\frac{1}{2} \varepsilon^{\prime 2}-\frac{1}{2} \varepsilon^{\prime \prime 2}-\left(\varepsilon^{\prime \prime} \varepsilon^{\prime}\right)^{\prime}\right)+\theta\left(\varepsilon^{3}\right) \\
& 1
\end{aligned} \\
\Rightarrow \\
I_{\text {Sch }}=\frac{c}{2} \int_{0}^{2 \pi} d u\left(\varepsilon^{\prime \prime 2}-\varepsilon^{\prime 2}\right) \quad \text { ToT D tR. }
\end{gathered}
$$

Now we go to Fourier Space $\varepsilon(u)=\sum_{n \in \mathbb{L}} \varepsilon_{n} e^{\text {in } u}$

$$
\Rightarrow I_{s c h}=\frac{c}{2} \sum_{n \in \mathbb{Z}}\left(n^{4}-n^{2}\right) \varepsilon_{n} \varepsilon_{-n}
$$

There are 3 zero modes $n=0, \pm 1 \Rightarrow$ noh-invertible But they are the $3 S L(2, \mathbb{R}) \Rightarrow$ not physical so we don't integrate over them.
\Rightarrow the Propagator we get is:

$$
\langle\varepsilon(u) \varepsilon(0)\rangle=\sum_{n \neq 0, \pm 1} \frac{e^{\text {in }}}{n^{2}\left(n^{2}-1\right)} \rightarrow \begin{aligned}
& \text { in } 2 \text { weeks we } \\
& \text { will use it } \\
& \text { to compute } \\
& \text { the upt function }
\end{aligned}
$$

(2.5) Summary
(a) we studied ST gravity
(b) becomes a body theory of reparametrisations wa schwarzian action.
(c.) we found Saddle points of this action at finite temperature.
(d) The themadyncmics for those saccules gives a linear-in-T specific heat as expected from near-extrenal bl's.

NEXT: Will see how this same pattern appears in a theory of quantum mechanics called sym.

Homework ProbleMs:
(1) Find the equation $T_{\mu \nu}^{\phi}=0$ in Poincare coordinates and Verify that $\phi=\frac{\alpha+\gamma t+\delta\left(t^{2}+z^{2}\right)}{z}$ is the most general solution.
(2) For a curve $\zeta=(t(u), z(u))$ in Poincare coordinates, show the (maybe Methemerice $K=\frac{t^{\prime}\left(t^{\prime 2}+z^{\prime 2}+z^{\prime} z^{\prime \prime}\right)-z z^{\prime} t^{\prime \prime}}{\left(t^{\prime 2}+z^{\prime 2}\right)^{3 / 2}}$
(3) Verify that for a curve "close" to the boundary of AdS_{2}, this reduces to $\left.k=1+\varepsilon^{2} \operatorname{Sch}(t(u), u)\right)$, where $\varepsilon \ll l$ is the same small parameter as in the notes.
(4) Convince yourself that if $a d-b e=1$, then

$$
\operatorname{Sch}(t(u), u)=\operatorname{sch}\left(\frac{2 t(u)+b}{c t(u)+d}, u\right)
$$

(5) Expand the schwarzian around the solution $t(u)=u$ $(t(u)=u+\varepsilon(u))$ and find that to quadratic order and up to total derivatives, it gives:

$$
\operatorname{sch}(u+\varepsilon(u), u)=\left(\varepsilon^{112}-\varepsilon^{12}\right)+O\left(\varepsilon^{3}\right)
$$

