LonTI lectures: on syM and the emergence of spacetime

Lecture 3: The SYK model
For this lecture we will "forget" about what we know about gravity and study a problem in quantum mechanics. Aim: See the emergence of spacetime

TODAY: * Define \& study the syk model

* Compute two-point functions in the lerge-N limit.
* See the emergence of the Schwarzian theory in the IR.
(3.1) the Sachdev-Ye-Kitaev model
* Simple, Ginite, quantum mechanical theory involving

N Majorana fermions.
3.1.1 Mejorana fermions in QM

$$
\begin{aligned}
& \psi_{i}, i=1, \ldots, N . M_{2 j o r a n a} .\left\{\psi_{i}, \psi_{j}\right\}=\delta_{i j} \\
& \psi_{i}^{+}=\psi_{i} \quad i, j=1, \cdots, N
\end{aligned}
$$

We will work in Euclidean signature again and so we need to find representations of this clifford algebra.

There's a simple way of finding them:
Let's define:
$\binom{$ we assume }{$N=2 k$ is even }

$$
\left.\begin{array}{l}
c_{i}=\frac{1}{\sqrt{2}}\left(\psi_{2 i-1} i \psi_{2 i}\right) \\
c_{i}^{+}=\frac{1}{\sqrt{2}}\left(\psi_{2 i-1}+i \psi_{2 i}\right)
\end{array}\right\} i=1,-1 k
$$

\Rightarrow There ones satisfy the "usual" fermionic anti-commutation relations: $\left\{c_{i}, c_{j}\right\}=\left\{c_{i}^{+}, c_{j}^{+}\right\}=0 ;\left\{c_{i}, c_{j}^{\top}\right\}=\delta_{i j}$.
So now we know how to build a rep of this. We choose a vacuum annihilated by all the $\left.c_{i} \mid 0\right)=0$ $\Rightarrow 2$ basis for this representation is given by $\left.\left(c_{1}^{+}\right)^{n_{1}}\left(c_{2}^{+}\right)^{n_{2}} \ldots\left(c_{k}^{+}\right)^{n_{k}} \mid 0\right) \quad n_{k}=0,1$
\Rightarrow How many states do we have? each n_{i} can be 0 or 1 and we have k of then $\Rightarrow 2^{k}=2^{N / 2}$
(It is possible to prove that this is the only irep up to unitary equivalence)
Note: Hilbert space grows exponentially with N
\Rightarrow What are these fermions? We can build them recursiuly

- Start with $N=2 \longrightarrow \psi_{1}^{(1)}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$
* Basically, each fermion is a $2^{N / 2} \times 2^{N / 2}$ matrix
\rightarrow mention Kolya's lecture
For mstance, $N=4$

$$
\left(\begin{array}{cccc}
0 & 0 & i / \sqrt{2} & 0 \\
0 & 0 & 0 & -i, \sqrt{2} \\
i \sqrt{2} & 0 & 0 & 0 \\
0 & -i / \sqrt{2} & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & 0 & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0
\end{array}\right),\left(\begin{array}{cccc}
0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{\sqrt{2}}} \\
0 & 0 & \frac{i}{\sqrt{2}} & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & -\frac{i}{\sqrt{2}} & 0 \\
\frac{i-i}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \frac{i}{\sqrt{\sqrt{2}}} \\
\hline
\end{array}\right)
$$

How: Show that $N=2 \& 4$ Satisfy the Mejorera condition.
Hew (computationally): Create the $N=20$ representation. what is the largest N you can get??

The sui Hamiltonian:

$$
\begin{aligned}
& H_{\text {syk }}=\sum_{i, j n \lambda=1}^{N} J_{i j k e} \psi_{i} \psi_{j} \psi_{k} \psi_{e} \\
& \begin{array}{l}
\text { diff colours } \\
\text { diff capliugs }
\end{array}
\end{aligned}
$$ between groups of $4 \rightarrow$ these are called "all-to-all" couplings.

Ho: Show that the number of independent couplings needed is $\frac{N!}{4!(N-4)!}$ and in the large $-N$, it grows $a s \sim \frac{N^{4}}{24}$.
\Rightarrow So, Hsyk is also a $2^{N / 2} \times 2^{N / 2}$ matrix.
But I am missing a key ingredient: What are the Jijke? ?

* We will choose the couplings randomly from a Gaussian ensemble with mean $\bar{\mu}=0$ and Variance $\sigma=\frac{\sqrt{3!} J}{N^{3 / 2}}$

* J is fixed and has dimensions of energy.
* $\sqrt{3}$! is normalisation but the scaling with N will be important to have a proper large-N limit.
* Of course, couplings will be "arbitrary", so instead we will average over all possible realisations of the model. (even though the model is selfaveriging so in many cases it is not necessary)
At an operational level: dst. choose random couplings
(2): compute whatever you are interested m computing
(3) Chose another set of couplings
(4) Repeat ...
(5) Compute an average over all resits.
Caution: Say you want to compute $\log z$

What do you do? $\langle\log z\rangle_{J}$ or more complicated
involves usually
a replica trick $\quad \log \langle z\rangle_{J}$??
"annealed" disorder
But: For syr at large-N both approaches give the same result, so we will do annealed disorder for the rest of the lecture.

Finally, the number of fermions in the interaction is arbitrary, so sometimes it is convenient to talk about the q-s4k model:

$$
\begin{aligned}
& H_{q}=i^{q / 2} \sum J_{i_{1} \ldots i_{q}} \psi_{i_{1}} \ldots \psi_{i q} \\
& \sigma \simeq J / N \frac{q-1}{2}
\end{aligned}
$$

* Analitically solvable when $q \rightarrow \infty$
* $q=2$ is fermions with random masses (not chaotic)
(3.1.1) The Energy spectrum of Hoyle

How: Diagonalise the Hsyue and plot the eigenvalue in a histogram. compare all q 's $\omega / q=4$.
Plots \& reference to coy?

semi-corcle of random theories \rightarrow many states close to the
ground state long tail for $f=2 \rightarrow$ integrable model

Last comment: We can compute now $2 p t$-functions

$$
e . g:\left\langle\psi_{i}(c) \psi_{i}(0)\right\rangle_{\beta}=\operatorname{Tr}\left[e^{-\beta H} e^{\tau H} \psi_{i} e^{-\tau H} \psi_{i}\right]
$$

\Rightarrow It's just matrix multiplication + Trace
[see valya's lecture]
(3.2) Solving the s4k model in the large-N limit

- Two ways: (1) Diagrammatic expansion
(2) P2 th integral

Now we forget about matrices and we treat syM 2S a olid QFT.
So it is better to work m the action formalism:

$$
S_{S \psi k}=\int d \tau\left[\frac{1}{2} \sum_{i} \psi_{i} \partial_{\tau} \psi_{i}+\sum J_{i j u e} \psi_{i} \psi_{j} \psi_{u} \psi_{l}\right]
$$

\Rightarrow We also need to add disorder

$$
\langle Z\rangle_{J} \equiv \int d J_{\text {jul }} e^{-\sum \frac{J_{i i^{2} \mu}}{N^{3}}} \int D \psi_{i} e^{-S_{\text {site }}}
$$

Let's do first perturbation theory in J.

* $J=0 \Rightarrow H=0 \Rightarrow \psi_{i}(t)=\psi_{i}$ but given we have

$$
\begin{aligned}
& \left\{\psi_{i}, \psi_{j}\right\}=\delta_{i j} \Rightarrow G_{i j}^{\text {free }}(\tau)=\frac{1}{2} \delta_{i j} \operatorname{sign}(\tau) \\
& \Rightarrow G^{\text {free }}(\tau)=\frac{1}{N} \sum G_{i i}^{\text {free }}=\frac{1}{2} \operatorname{Sin}(\tau)
\end{aligned}
$$

\rightarrow Iime-ordered 2 pt-function. Anti-symm because fermions

$$
G_{i j}^{\text {free }}(\omega)=\int_{-\infty}^{\infty} d \tau e^{i \omega \tau} G_{i j}^{\text {free }}(\tau)=-\frac{\delta_{i j}}{i \omega}
$$

* Props gator and vertices for each realisation of the model we have
free propagator

* But we also need to average over disorder \Rightarrow we will Consider Jijne as 2 "field" but with no free propagation zero 1 pt function and:

$$
\left[-\left\langle J_{i_{1} j_{1} k_{1} l_{1}} J_{i 2} j_{2} k_{2} l_{2}\right\rangle_{j}=\frac{3!J^{2}}{N^{3}} \delta_{i_{1} i_{2}} \delta_{j i_{2}} \delta_{k_{1} k_{2}}\right.
$$

* Now we can start doing diagrams:
- First contribution vanishes $\left\langle\frac{i^{\ell} D_{k}}{j}\right\rangle_{J} \sim\left\langle J_{i j k l}\right\rangle=0$
- Next diagram is the melon

$$
\begin{aligned}
& =3!\frac{J^{2}}{N^{3}} \delta_{i, i 2} \delta_{j_{1}} \delta_{j 2} \delta_{x_{1} k_{2}} \delta_{l_{1} l_{2}} G_{l_{1} l_{2}} G_{u_{1} k_{2}} \\
& =3!\frac{J^{2}}{N^{3}} G_{j i}^{\text {free }} G_{i j k e}^{\text {free }} G_{i, k}^{\text {free }} \delta_{i i_{2}}
\end{aligned}
$$

Dues not scale with N!!

- J3 will vanish again, so we can go to J^{4}

$$
\frac{J^{4}}{N^{6}}
$$

$\delta_{i i_{2}} \delta_{j_{1} j_{2}} \underline{\delta_{1 u_{1} k_{2}}}$
$\delta_{l_{2} l_{2}}$

$$
\delta_{l_{1} l_{2}}
$$

$\delta_{l_{3} l_{4}} \delta_{13 j 4} \delta_{n_{3} / 4}$
$\underline{\delta_{3} i n}$
$\sigma_{1_{1} l_{3}} \sigma_{n n_{2}} G_{i j j_{2}}$
$\mathrm{Cr}_{2} \mathrm{l}_{4} \mathrm{Gunk}_{4}$
$\mathrm{Goj}_{3} J_{4} G_{i 3 i 4}$

$$
\begin{array}{r}
\Rightarrow \frac{J^{4}}{N^{6}} \delta_{i i_{2}}\left(G_{j 5}^{\text {tree }}\right)^{5} \underbrace{\delta_{l_{1} l_{1}} \delta_{l_{3} l_{4}} G_{l_{1} l_{3}} G_{l_{2} l_{4}}}_{G_{l l_{3} l_{3}} G_{l 1} l_{3}} \\
\alpha \sigma_{l l l}^{\vdots} \\
\Rightarrow \frac{J_{l l_{3}}^{4}}{N^{6}} \delta_{i \cdot l_{2}}\left(G_{i i}^{\text {bree }}\right)^{6}=J^{4} \cdot N^{0}
\end{array}
$$

HoW

Show that this dizgrem is sublerding in the large-N expansion

$$
=\frac{J^{4}}{N^{6}}\left(G_{k_{k}}^{\text {bree }}\right)^{4} G_{u_{1}, k_{2}}
$$

(Similar to planar limit in su(N)) $=\frac{J^{4}}{N^{2}}$

Conclusion: In the large-n limit only melonic diagrams contribute!!
(Note the importance of the N -scaling in the Variance)

Now left's write down the two-point function expansion:

$$
\begin{aligned}
& \Rightarrow G(\tau)=-+\because+\because \\
& +\Theta^{2}+
\end{aligned}
$$

We would like to write these diagrams as equations But we need to be careful $G\left(z_{1} \tau_{2}\right)$ are bilinear functions

$$
\sum\left(\tau_{1} \tau_{2}\right)
$$

\Rightarrow multiplication is like matrix multiplication

$$
\begin{aligned}
& A \cdot B\left(\tau, \tau^{\prime}\right)=\int d \tau^{\prime \prime} A\left(\tau, \tau^{\prime \prime}\right) B\left(\tau^{\prime \prime}, \tau^{\prime}\right) \\
& (A \cdot B)_{i, j}=\sum_{n} A_{j k} B_{k j}
\end{aligned}
$$

\Rightarrow the $1^{\text {st }}$ line reads

$$
\begin{aligned}
G & =G^{\text {bree }}+G^{\text {bree }} \Sigma G^{\text {free }}+G^{b} \sum G^{b} \sum G^{f}+\cdots \\
& =G^{\text {free }}\left[1+\sum G^{f}+\sum G^{f} \sum G G^{f}+\cdots\right] \\
& =G^{b}\left[1+\sum G^{f}\right]^{-1} \quad G \sum(\Sigma G)^{x}=\frac{1}{1-\Sigma G} \\
G & =\left[\left(G^{\text {free }}\right)^{-1}-\sum\right]^{-1} \text { But we know }\left(G^{\text {bree }}\right)^{-1} \\
& =\delta\left(\tau, \tau^{\prime}\right) \partial_{\tau^{\prime}}
\end{aligned}
$$

\Rightarrow We usually write this equation as

$$
\begin{array}{l|l}
G=(\partial r-\Sigma)^{-1} \\
\Sigma=J^{2} G^{3}
\end{array} \begin{aligned}
& G=(\partial c-\Sigma)^{-1} \\
& \Sigma=J^{2} G^{q-1}
\end{aligned}
$$

\Rightarrow These effs. are called Schwinger-Dyson (SD) equations.
\Rightarrow we managed to "solve" the theory at large-N at all orders in J !!
$\rightarrow\binom{$ Of course we still need to solve these eds. }{ but it is already important that we found such } eqs. to start with. usually, it is not the case in QFT.

