* The Path integral approach

Alternatively, we can find the SD eff from a saddlepoint limit of the full path integral. The calculation is a bit long but it is quite clear.

$$
\langle z\rangle_{S}=\int D \psi_{i} d J_{\text {ike }} e^{-\sum J_{\text {ink }}^{2} / J_{k} i_{3}} e^{-\left(\int d \tau \frac{1}{2} \psi \partial_{c} \psi_{i}+\sum a_{\text {ike }} \psi_{i} \psi_{j} \psi_{k} \psi_{l}\right)}
$$

- Note first that Jisul only appear quadratically (and it is a normal integral so we can do it!)

$$
\begin{aligned}
& \int d x e^{-a x^{2}+b x}=\sqrt{\pi / a} e^{b^{2} / a} \\
& \Rightarrow\langle z\rangle_{J} \sim \int D \psi_{i} \exp \left(-\int d r \frac{1}{2} \psi_{i} \partial \partial_{i} \psi_{i}+\sum_{1 \leqslant i<j^{k} \ll l!N^{N}} \frac{3 J^{2}}{N^{3}} \iint d \tau d \tau^{i}\right. \\
& \psi_{i} \psi_{j} \psi_{n} \psi_{e}(\tau) \\
& \psi_{i} \psi_{j} \psi_{u} \psi_{e}(\tau)
\end{aligned}
$$

Now we can use the fermions algebra to show that

$$
\sum_{1 \leq j<j<k<l \leq N} \psi_{i} \psi_{j} \psi_{n} \psi_{l}(\tau) \psi_{i} \psi_{j} \psi_{u} \psi_{l}\left(z^{\prime}\right)=\frac{1}{4!}\left[\sum_{i} \psi_{i}(\tau) \psi_{i}\left(\tau^{\prime}\right)\right]^{4}
$$

* Here comes the clever trick. We will insert an identity in the path integral to usue sure that $G=\psi_{i} \psi_{\text {: }}$

$$
\begin{aligned}
1 & =\int D G \delta\left(N G\left(\tau, \tau^{\prime}\right)-\sum \psi_{i}(\tau) \psi_{i}\left(\tau^{\prime}\right)\right) \\
& \sim \int D G D \Sigma \exp \left(-\frac{N}{2} \iint d \tau d \tau^{\prime} \Sigma\left(G-\frac{1}{N} \Sigma \psi \psi\right)\right)
\end{aligned}
$$

$\Rightarrow 6$ is the fermion bilinear \& Σ is a Lagrange multiplier to impose the Constraint!!

* Now we put everything together

$$
\begin{aligned}
\langle Z\rangle_{J} \sim \int D \psi_{i} D G D \sum \exp \left(-\frac{1}{2} \sum_{i} \psi_{i} \partial_{\tau} \psi_{i}-\frac{1}{2} \iint N \sum\right. & \left(G-\frac{1}{N} \sum_{i} \psi_{i} \psi_{i}\right) \\
& +\frac{J^{2} N}{2.4} \int\left(G^{4}\right)
\end{aligned}
$$

\Rightarrow Now the fermions appear quadratically inside an exponential, so we can integrate them out!!
Wiki
pedia Berezin Gaussian Integral
pediz

$$
\begin{aligned}
\langle z\rangle_{J} & \sim \int D G D \Sigma \operatorname{det}\left(\partial_{\tau}-\Sigma\right)^{N / 2} \exp \left\{-\frac{N}{2} \iint\left(\Sigma 6-\frac{\partial^{2}}{4} \sigma^{4}\right)\right\} \\
& =\int D G D \Sigma e^{-N I[G, \Sigma]}
\end{aligned}
$$

with $I(G, \Sigma)=-\frac{1}{2} \log \operatorname{det}(\partial \tau-\Sigma)+\frac{1}{2} \iint\left(\Sigma 6-\frac{1}{4} J^{2} \sigma^{4}\right)$

For general q

$$
I(G, \Sigma)=-\frac{1}{2} \log \operatorname{det}(\partial \tau-\Sigma)+\frac{1}{2} \iint\left(\Sigma \sigma^{-} \frac{1}{q} \delta^{2} \sigma^{q}\right)
$$

Now, because we have an N in front we can take $N \rightarrow \infty$ and do a saddle-point approximation.

How show that the saddle-point ifs are the same as the SD-eps- obtained before.
(3.3) Solutions to SD-eqS

$$
\left\{\begin{array}{l}
G=\left(\partial_{\tau}-\Sigma\right)^{-1} \Leftarrow \begin{array}{c}
\text { Nirolzy will } \\
\text { Solve them } \\
\text { numerically }
\end{array} \\
\Sigma=J^{2} G^{q-1}
\end{array}\right.
$$

How this depends on the coupling?

$$
\begin{aligned}
& \xrightarrow[\substack{u \\
(J=0)}]{\substack{\text { Fereemens } \\
\text { Sen }}} \xrightarrow[\substack{\left.I R \\
j\left(z-\tau^{2}\right)\right) 1}]{? ?} \\
& \Sigma_{\Sigma=0}^{b} \Rightarrow G=\partial_{c}^{-1} \\
& \Rightarrow \partial_{t} \text { is } 2 \mathrm{uv} \text { term. } \\
& \rightarrow \delta\left(\tau-z^{\prime}\right) a_{z}
\end{aligned}
$$

So let's see what happens if we remove that W-term.

CRUCial: the equations acquire OBSERUATION an extra symmetry

Suppose $\tau \rightarrow \phi(\tau)$ st. $G\left(\tau, \tau^{\prime}\right) \rightarrow\left[\phi^{\prime}(\tau) \phi^{\prime}\left(\tau^{\prime}\right)\right]^{\triangle}$ $G\left(\phi(\tau), \phi^{\prime}\left(\tau^{\prime}\right)\right)$

$$
\begin{aligned}
& \Sigma\left(\tau, \tau^{\prime}\right) \rightarrow\left[\phi^{\prime}(\tau) \phi^{\prime}(\tau)\right)^{s(f-1)} \\
& \sum\left(\phi(\tau), \phi\left(\tau^{\prime}\right)\right)
\end{aligned}
$$

\Rightarrow Under reps, both $\sum \& G$ transform as conformal 2 pt . functions.
(HW) Show that $\Delta=\frac{1}{q}$.
Show the the first SD eq. is mueriant.
\Rightarrow EMERGENT CONFORMAL SYMMETRY IN BROKEN BY THE De TERM!!

* So now we can look at explicit solutions. (on the line):

$$
\Rightarrow G_{c}^{(\tau)}=\# \frac{\sin (\tau)}{|\tau|^{2 \Delta}}, \Sigma_{c}=\#^{q-1} J^{2} \frac{\operatorname{sgn}(\tau)}{|\tau|^{\Delta(\rho-1)}}
$$

\Rightarrow Then solve the SD effs. m the IR. $\left(\tau \gg J^{-1}\right)$
(in the UV, $\tau \ll J^{1} \Rightarrow G=\operatorname{sgn}(\tau)$

* At finite temp $T \sim T+\beta \quad \phi(c)=\tan \frac{\pi c}{\beta}$

$$
\Rightarrow G_{c}=\#\left[\frac{\pi}{\beta \sin \frac{\pi T}{\beta}}\right]^{2 D} \operatorname{sgn}(\tau)
$$

* Symmetries: Now that we found a solution, not all the reparemetrisztions $\phi(2)$ leave the solution invariant. Only $S L(2, \mathbb{R})$ transformations $\phi(z)=\frac{a \tau+b}{c \tau+c}, \begin{array}{r}a d-b c \\ =1\end{array}$
\Rightarrow the solution breaks the full reparametrisation symmetry down to $\operatorname{SL}(2, \mathbb{R})$.
(3.4) The emergence of the Schwarzian
(Rosenhaus 1807.08334)
Up to now, we found an entire space of Solutions

$$
G\left(\tau, \tau^{\prime}\right)=b \frac{\operatorname{sign}\left(\tau_{12}\right)}{J^{2 \Delta}} \frac{\phi^{\prime}(\tau)^{\Delta} \phi^{\prime}\left(\tau^{\prime}\right)^{\Delta}}{\left|\phi(\tau)-\phi\left(\tau^{\prime}\right)\right|^{2 \Delta}}
$$

But now we would like to move a bit from the conformal point \Rightarrow we need to include the effect of the $\partial \varepsilon$ term. Let's go back to the action:

$$
I(\Sigma, G)=-\frac{1}{2} \log \operatorname{det}(\partial \tau-\Sigma)+\frac{1}{2} \int d \tau_{1} d \tau_{2}\left(\Sigma G-\frac{s^{2}}{4} G^{4}\right)
$$

Just for convenience let's define $\sigma\left(\tau, \tau^{\prime}\right)=\delta\left(\tau-\tau^{\prime}\right) \partial_{\tau}$ and let's do the change of variables to $\Sigma \rightarrow \Sigma+\sigma$.

$$
\begin{aligned}
& \Rightarrow I(\Sigma, G) \rightarrow I_{C F T}+I_{S} \text { where } \\
& I_{C F T}=-\frac{1}{2} \log \operatorname{det}(-\Sigma)+\frac{1}{2} \int d \tau_{1} d \tau_{2}\left(\Sigma 6-\frac{J^{2}}{4} G^{4}\right) \\
& I_{\delta}=\frac{1}{2} \int d \tau_{1} d \tau_{2} \sigma\left(\tau_{1}, \tau_{2}\right) G\left(\tau_{1}, \tau_{2}\right)
\end{aligned}
$$

We want to see the leading correction that Is gives when we move aust from the ∞ IR.
Since σ has a -delta function, it is convient to change times to $\frac{\tau_{1}-\tau_{2}}{2}=\tau_{12}$

$$
\frac{t_{1}+\tau_{2}}{2}=\tau_{+}
$$

\Rightarrow Then we can expand $G\left(\tau_{1} \tau_{2}\right)$ for $\tau_{12} \ll 1$
The result is $G \rightarrow \frac{\operatorname{sgn}\left(z_{12}\right)}{\left|J \tau_{12}\right|^{2 s}}\left(1+\frac{\Delta}{6} \tau_{12}^{2} \operatorname{Sch}\left(\phi\left(\tau_{1}, r_{1}\right)\right)\right.$

$$
\Rightarrow I_{S} \rightarrow \frac{\#}{J} \int d \tau_{+} \operatorname{Sch}\left(\phi\left(\tau_{7}\right), \tau_{+}\right)+\cdots
$$

Note: The number cannot be determined by this procedure $\leadsto \frac{\int d \tau-\delta(\tau-)_{\tau} \tau_{-}^{2-2 \Delta}}{\begin{array}{c}\text { needs to be regulated } \\ \text { very wo term. }\end{array}}$
SUMMARY: SYK model of fermions in QM w/disorder

$$
\left.\begin{array}{l}
\rightarrow \text { exact diagonalisation } \\
\rightarrow \text { S-D large-N } \\
\rightarrow \text { Analytic in the IR }
\end{array}\right\} \begin{aligned}
& \text { very } \\
& \text { solvable } \\
& \text { model }
\end{aligned}
$$

- In the large-n limit, there's an emergent reparemetrisation symmetry in the IR that is broken Epantaneasly by the conformal solution
\& explicitly by the Schwarzian action.
- Very similar to the $n A d S_{2}$ story.

NEXT: - Solve sYM completely \& analytically in the large-q limit.

- See the linear-in-T specific heat
- Quantum chaos \& out-of-time ordered 4 pt. functions.
(1) Representations of clifford algebra
(a) Show that $N=2 \& 4$ in the notes satisfy the Mejorena condition.
(b) (computationally): create the $N=20$ representation. what is the largest N you can get??
(2) Show that the number of inge pendent couplings needed is $\frac{N!}{4!(N-4)!}$ and in the large- N, it grows as $\sim \frac{N^{4}}{24}$. What is the generalisation to general q ?
(3) With Kolya's help:

Diagonalise the Hoyle and plot the eigenvalues in a histo rem. compare all q 's $w / q=2$.
(4) Show that the following diagrams are subleading in the large $-N$ expansion:

If you want even more diagrams look at figure 3 in 2002. 12187.
(5) a) Show that the saddle-point eqs. of the G, Σ actions are $\left\{\begin{array}{l}G=(\partial \tau-\Sigma)^{-1} \\ \Sigma=J^{2} G-1\end{array}\right.$
b) (extra: useful for next lecture)

If $\left\{\begin{array}{l}G=g_{0}+\frac{g}{q}+\ldots \text {, show that } S D \text { effs. }\end{array}\right.$ reduce to 2 single differential equation

$$
\partial^{2} c g \cong 5^{2} e^{g}(c)
$$

Hint: It might be useful to go to Fourier space.
(6) By putting the conformal ansatz into the S-D effs. Show that $\Delta=1 / q$ \& $b^{q}=\frac{1}{\pi^{2}}\left(\frac{1}{2}-\frac{1}{q}\right) \tan \frac{\pi}{q}$ for $G_{c}=\frac{b}{|\tau|^{2 \Delta}} \operatorname{sgn}(\tau)$.
(7) By now, you should be able to compute a number of different two point functions:

* Exact diagonelisation at finite-N
* Solution to SD at large-N
* Conformal two-point function.
* large-q 2-pt function of you did 5b)

Plot the 4 of then for different values of $\beta J \& q$. Do they start looking similar when $\beta 3 \gg 1$? Why or why not??

