
What is an Anomaly?

Lectures for New PhD Students
London Theory Institute

Problem Set

due Monday 25 October

1. Charged Bead on a Wire with a Magnetic Field: Consider a bead of mass m and
charge q constrained to move on a circular wire of radius R. Concentric with the wire,
there is a constant magnetic field of strength B in a disk shaped region of radius R0 < R.
Show that the quantum mechanical Hamiltonian for the bead takes the form

H = c

(
−i ∂
∂θ

+ γ

)2

.

Express the constants c and γ in terms of m, q, B, R, and R0.

The usual form for the Hamiltonian of a charged particle in the presence of a magnetic
field is

H =
(p− qA)2

2m

where ∇ × A = B. Rotational symmetry suggests that there is a gauge where A is
purely tangential. From Stokes’ Theorem, we have then for a disk shaped region of radius
R > R0,

πR2
0B =

∫
r<R

B d2x =

∫
r<R

∇× Ad2x =

∮
r=R

A · ds = 2πR|A|

In other words, Aθ = Φ
2πR

where πR2
0B = Φ is the magnetic flux.

Plugging into the Hamiltonian and using that pθ = 1
iR
∂θ, we find that

H =
(pθ − qAθ)2

2m
=

1

2mR2

(
−i∂θ −

qΦ

2π

)2

.

2. A Dihedral Group: Show that the elements −1, Rπ, and C, subject to the constraints
R2
π = id = C2 and CRπC = −Rπ generate the dihedral group D8.

The dihedral group is generated by a 90◦ rotation a and a reflection x subject to the
conjugation relation xax = a−1. Also clearly a4 = 1 = x2. From the statement of the
problem, we see that

CRπCRπ = −1 ,

and hence that
(CRπ)4 = 1

Suggesting we equate a = CRπ in this 2d representation. We further hypothesize that
C = x, and so we investigate

CCRπC = RπC .

Now note that CRπRπC = 1 and so indeed RπC = a−1.
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3. Weyl transformations: Verify the following Weyl transformation rules:

δΓλµν = δλµ∂νω + δλν∂µω − gµν∂λω ,

δnµ = ωnµ , δnµ = −ωnµ ,
δKµν = ωKµν + hµνn

λ∂λω ,

δK = hµνKµν = −ωK + 2nλ∂λω ,

δR(2d) = −2ωR(2d) − 4�ω , δ�(2d) = −2ω�(2d) .

A Weyl transformation acts on the metric as gµν → e2ω(x)gµν . Here nµ is a unit normal
to the boundary, hµν = gµν −nµnν is a projector onto the boundary, and Kµν = hµλ∇λnν
is the extrinsic curvature.

4. The Conformally Coupled Scalar: Find the value of the constant ξ that makes the
following scalar field action Weyl invariant:

S = −1

2

∫
ddx

√
det g

[
(∂µφ)(∂µφ) + ξRφ2

]
where R is the Ricci scalar curvature. Assume the Weyl transformation rules gµν →
e2ω(x)gµν and φ(x)→ e−

d−2
2
ω(x)φ(x).

At linear order, the shift in the metric is δgµν = 2ωgµν and δφ = −d−2
2
ωφ. We also need

δgµν = −2ωgµν and δ
√
−g = dω

√
−g. Figuring out how the Ricci scalar shifts is a bit of

a pain. One nice computer package for doing so is called xAct. The result is that

δ
(√
−gR

)
=
√
−g 2ω

(
d− 2

2
R− (d− 1)�

)
.

We find then that

δS = −1

2

∫
ddx
(

2(∂µφ)(∂µδφ)
√
−g + (∂µφ)(∂νφ)δ(

√
−ggµν) +

+2ξRφδφ
√
−g + ξφ2δ(

√
−gR)

)
=

∫
ddx
√
−g
[d− 2

2
(∂µφ)∂µ(ωφ)− d− 2

2
ω(∂µφ)(∂µφ) +

+
d− 2

2
ξRωφ2 − d− 2

2
ξRωφ2 + (d− 1)ξω�φ2

]
.

Integrating the first term by parts, we see that the first and second terms cancel against
the last term, provided ξ = d−2

4(d−1)
. The third and fourth terms cancel trivially.

The following two questions assume a normalization of the boundary anomaly coefficients
that follows from the following anomalous scale variation of the effective action

δσW =

∫
d2x
√

deth
(
aR(2d) + bK̂µνK̂

µν
)
σ

where R(2d) is the Ricci scalar curvature on the boundary and K̂µν = Kµν − 1
2
hµνK is the

traceless part of the extrinsic curvature.
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5. *Boundary “a” for the Free Scalar: Compute the boundary coefficient a for a con-
formally coupled three dimensional scalar field by computing the partition function on a
hemisphere with both Dirichlet and Neumann boundary conditions.

The eigenmodes on an S3 are characterized by three integers (`,m,m′) subject to ` ≥
|m| ≥ |m′|. The eigenvalues are − `(`+2)

R2
0

. The degeneracy is then

deg =
∑̀
m=0

m∑
m′=−m

1 =
∑̀
m=0

(2m+ 1) = (`+ 1)2

The eigenmodes on the sphere are also eigenmodes on the hemisphere. Those with ` −
m ∈ 2Z + 1 are odd functions about the equator and hence satisfy Dirichlet boundary
conditions. Those with ` −m ∈ 2Z are even and thus are Neumann. The Dirichlet and
Neumann degeneracies are respectively

degD =
1

2
`(`+ 1) ,

degN =
1

2
(`+ 1)(`+ 2) .

Reassuringly, they add up to (`+1)2. To derive these numbers, one can specialize to even
and odd `.

Now we have a conformally coupled scalar. In an earlier problem, we saw that the
conformal coupling constant ξ = d−2

4(d−1)
= 1

8
in the three dimensional case. Also, a unit

S3 has Ricci scalar curvature equal to 6. The conformal coupling thus acts like a mass
which will shift the eigenvalue by 3

4
, giving

`(`+ 2) +
3

4
=

(
`+

1

2

)(
`+

3

2

)
.

At any rate, we need to evaluate the infinite (and divergent!) sums

WD =
1

2

∞∑
`=0

1

2
`(`+ 1) log

(
`+

1

2

)(
`+

3

2

)
,

WN =
1

2

∞∑
`=0

1

2
(`+ 1)(`+ 2) log

(
`+

1

2

)(
`+

3

2

)
.

We can also consider the S3 partition function while we are at it,

W =
1

2

∞∑
`=0

(`+ 1)2 log

(
`+

1

2

)(
`+

3

2

)
.

A trick that we have at our disposal now, since we are interested in boundary anomalies,
is to regulate by removing the S3 partition function:

WD −
1

2
W = −1

4

∞∑
`=0

(`+ 1) log

(
`+

1

2

)(
`+

3

2

)
.
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As WD +WN = W , we will have WD − 1
2
W = −WN + 1

2
W .

As in the S2 case, we will use a heat kernel inspired regularization

WD −
1

2
W = −1

4

∞∑
`=0

(`+ 1)

∫
dt

t
(e−(`+ 1

2
)t + e−(`+ 3

2
)t)

= −1

4

∫
dt

t

et/2(1 + et)

(1− et)2
.

We again anticipate the anomaly comes from the small t (or UV) region of the integral –

WD −
1

2
W ∼ − 1

4t2min

+
1

48
log tmin .

Again, we take tmin = 1/R0ΛUV . We can remove the leading R2
0Λ2

UV behavior through
a boundary volume counter term. The remaining ΛUV ∂ΛUV

W = − 1
48

we interpret as
being proportional to the boundary anomaly a coefficient. (The Neumann case will have
the opposite sign.) In our normalization 8πa = − 1

48
. We may have made a number of

sign mistakes along the way, but I know the final answer is correct since the Dirichlet
case should have a lower a than the Neumann one. a is monotonically decreasing under
boundary RG flows.

6. *Boundary “b” for the Free Scalar: Compute the boundary coefficient b for the
conformally coupled three dimensional scalar by computing the two point function of the
displacement operator, both in the case of Neumann and Dirichlet boundary conditions.

Here we need to compute the stress tensor for the conformally coupled scalar and then
use the boundary limit of the T nn component as our displacement operator. In a general
curved space-time, the stress tensor has the form

T µν = 2
√
−g δS

δgµν
= (∂µφ)(∂νφ)− 1

2
gµν((∂ρφ)(∂ρφ) + ξRφ2)

+ξ(Rµν − 1

2
gµνR)φ2 − ξ(∇µ∇ν − ηµν�)φ2 .

In flat space, this result reduces to

T µν = (∂µφ)(∂νφ)− 1

2
ηµν(∂ρφ)(∂ρφ)− ξ(∂µ∂ν − ηµν�)φ2 .

The last term is invisible from the standard derivation, using Noether’s theorem and
translation invariance. It is however a total derivative and corresponds to a standard
“improvement” term.

For Neumann boundary conditions, the displacement operator takes the form (using the
equation of motion)

D = −1

2
(∂aφ)(∂aφ) + ξ∂a∂

aφ2 ,

while for Dirichlet, we have instead

D =
1

2
(∂nφ)(∂nφ)
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The displacement operator two-point function then follows from Wick’s Theorem and the
two-point function for φ. By the method of images, we find

〈φ(x, y)φ(0, y′)〉 = κ

(
1

(x2 + (y − y′)2)(d−2)/2
± 1

(x2 + (y + y′)2)(d−2)/2

)
Here x is the tangential distance along the boundary while y and y′ are the perpendicular
distance from it. The plus sign is for Neumann and the minus for Dirichlet. Finally, a
conventional normalization is κ−1 = (d− 2)Vol(Sd−1), consistent with the 1/2 in front of
the action, where Vol(Sd) is the volume of a unit Sd sphere.

Two useful auxiliary results are

〈∂aφ(x, 0)∂aφ(x′, 0)〉 = −2κ(d− 2)

(x− x′)d

〈∂nφ(x, 0)∂nφ(x′, 0)〉 =
2κ(d− 2)

(x− x′)d

From these, we obtain that the displacement operator two-point functions,

〈D(x)D(0)〉Dirichlet = 〈D(x)D(0)〉Neumann =
2κ2(d− 2)2

(x− x′)2d
,

are the same.
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