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1 Introduction

One of my most romantic images is that of turn of the Century Europe. That is the

period in the late 1800’s into the early 1900’s. Scientifically the great leap forward

in Fundamental Physics that we now all know about had not yet happened, although

various seeds had already begun sprouting. On the other hand the art scene was changing

rapidly and there was great excitement and a sense of anticipation of nascent change.

Or at least I like to believe that was the case.

These lectures are on Supergravity. Supergravity as understood at another turn of

the century one hundred years later. The art scene may not prove to be as revolutionary;

it was dominated by Brit Pop. But the science may well turn out to be. Hopefully you

will know by the next fin de sciècle.

In these lectures I aim to introduce supergravity as it was understood then. The

scientific revolution on the doorstep is of course the AdS/CFT correspondence. In the

interests of time we will not discuss that. It requires its own lecture series by a person

more qualified than me.

Supergravity holds a split personality. On the one had it is merely a low energy

effective action of String Theory whereas on the other it contains exact information

in the String coupling constant.1 Thus although Supergravity was once the poorer

sibling to the UV complete perturbative expansion offered by String Theory it also

offers the best window we have into the non-perturbative nature of String Theory and

ultimately M-Theory. A notable early example of this was the discovery of mirror

symmetry of Calabi-Yau manifolds, something that was unexpected, deep and born

from Supergravity. In short it is an effective theory of Strings, valid below the string

scale. And, as with other areas of Physics, effective field theories are very insightful and

powerful.

So what will we discuss? In section 2 we will introduce the basics of Supergravity:

what is it exactly? An important point here is how to describe fermions (spinors) on a

curved spacetime through the vielbein and spin connection formalism. In section 3 we

will look at examples of supergravities with maximal supersymmetry in ten and eleven

dimensions, as is relevant for String Theory and M-theory. We will look at special,

so-called BPS, solutions which preserve some fraction of the supersymmetry. These

are typically known as p-branes and which include the famous example of Dp-branes

of String Theory. As an aside we will prove the non-perturbative stability of these

states using the Nestor tensor in a method adapted from Witten’s proof of the stability

of Minkowski space. Lastly in section four we will look at another aspect of higher

dimensional supergravities: namely their compactification on torii and the appearance

of U-duality.

Topics that we won’t discuss, mainly due to time and my ignorance, are gauged

1Thats isn’t really fair as there are import phenomenological applications of four-dimensional N = 1

supergravity, independently of whether or not String Theory has anything to do with our Universe,

that we won’t discuss here.
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supergravities, G-structures, classification of supersymmetric solutions and generalised

geometry. A more complete discussion can be found in a variety of text books but

perhaps most notably [1] and [2]. I also mention [3] which is an old introduction to

M-theory.

2 Vielbeins and Spin Connections

First let us describe what we mean by supergravity. One way to think about it is a

theory with local supersymmetry. What has this got to do with gravity? Well consider

a simple supersymmetric system of the form (for simplicity we assume everything is

real)

δφ = i󰂃ψ

δψ = iΓµ∂µφ+ . . . , (1)

where 󰂃 = 󰂃TC−1 with C the charge conjugation matrix:

ΓT
µ = −CΓµC

−1 (2)

and the ellipsis denotes additional terms which might arise in an interacting theory.

We don’t particularly care what φ and ψ represent (scalars, components of vectors or

spinors etc.) only that φ is Bosonic and ψ Fermionic. Looking at the closure of two

supersymmetries on φ we find

[δ1, δ2]φ = i󰂃2Γ
µ󰂃1∂µφ− (1 ↔ 2) + . . .

= vµ∂µφ+ . . . , (3)

where vµ = i󰂃2Γ
µ󰂃2 − i󰂃1Γ

µ󰂃1 is some constant vector. We can think of this resulting

transformation as arising from a translation:

xµ → xµ + vµ

φ(xµ) → φ(xµ + vµ) . (4)

This is the familiar statement that (Poincarè) supersymmetries close onto momentum:

{Qα, Qβ} = 2(ΓµC−1)αβPµ (5)

If we now consider a local supersymmetry where 󰂃 depends on spacetime our trans-

lation becomes an infinitesimal coordinate transformation

xµ → xµ + vµ(x) . (6)

Thus theories that are invariant under local supersymmetry must also posses general

coordinate invariance.
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What might such a theory look like. We expect it to have a metric tensor gµν how

would that change under supersymmetry? A natural guess would be

δgµν ∝ i󰂃Γµψν + i󰂃Γνψµ (7)

where now ψµ, the superpartner to gµν , has picked-up a vector index in addition to its

spinor index α which we have not written explicitly. Such a field is called a gravitino or

Raita-Schwinger field. What would the variation of ψµ be? We would need something

like

δψµ = Dµ󰂃+ . . . (8)

But what does Dµ mean exactly? How do we put spinors on a curved manifold with

metric gµν . This leads us to construct vielbeins and spin connections.

2.1 Vielbeins

We know how to define spinors on flat space RD. Under an infinitesimal Lorentz trans-

formation xµ → xµ + λµ
νx

ν vectors transform as δV µ = λµ
νV

ν and spinors as

δψ =
1

4
λµνΓµνψ (9)

We need to find a way to map this structure onto a manifold.

Exercise: Verify that if Aµ = ψ̄Γµψ then δAµ = λµ
νAν .

On a manifold the tangent space at each point is RD. So we can define spinors

there. We then somehow need to move them down to the manifold itself. To do this we

introduce the concept of a vielbein frame. Here we write

gµν = eµ
ρeν

ληρλ (10)

For some object eµ
ν which is called the vielbein (or sometimes vierbein in four-dimensions,

zweibein in two-dimensions and einbein in one-dimension). Since gµν is invertible so is

eµ
ρ and we denote its inverse by eρ

µ so that

eµ
ρeρ

ν = δνµ (11)

or equivalently

eλ
µeµ

ρ = δ
ρ

λ (12)

The main point of vielbeins is that they allow us to convert tangent space indices,

which we denote with an underline µ, into so-called world-indices corresponding to

coordinates xµ on the manifold. Since we can define spinors in the tangent space we

can then map them to the manifold. We can use eµ
ρ to map between objects on the

manifold such as vectors and their cousins in the tangent space:

V ρ = eµ
ρV µ (13)
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Note the if there are functions yµ such that

eµ
ν =

∂yν

∂xµ
(14)

then actually there is a coordinate transformation so that

ds2 = gµνdx
µdxν = ηµνdy

µdyν (15)

and therefore we have flat space. Thus (14) is typically not possible. As such if we write

∂ν = eν
µ∂µ (16)

then ∂ν is not a derivative with respect to some variable, in particular [∂µ, ∂ν ] ∕= 0. The

eµ
ν are sometimes referred to as a non-coordinate frame.

In the literature it is more common to denote a vielbein by eµ
a. While I agree that

this is a more elegant notation I prefer not to use it as i) it requires taking up a new

index a whose range is exactly the same as µ and ii) if you ever need write down an

explicit expression for, say V 1, without the underline it is hard to know whether you

refer to the tangent or world frame.

Given a metric gµν one can always find a vielbein. Since there is no symmetry

condition on eµ
ν it holds more degrees of freedom than in gµν . On the other hand it is

not unique as

e′µ
ν = Λν

ρ(x)eµ
ρ (17)

will also satisfy

gµν = e′µ
ρe′ν

ληρλ (18)

for any local Lorentz transformation Λν
ρ(x):

ηρλ = Λν
ρ(x)Λ

ν
λ(x)ηµν (19)

One can check that the counting is right: In D-dimensions eµ
ν has D2 independent

components but the redundancy corresponding to local Lorentz transformations relates

D(D − 1)/2 degrees of freedom leaving D(D + 1)/2 degrees of freedom which matches

that of a symmetric D ×D matrix.

As an aside it is natural to think of eµ
ν as defining a 1-form that takes values in the

tangent space:

eν = eµ
νdxµ (20)

If you know forms this makes life a little simpler. If you don’t it’s okay, your life will

just be more complicated until you do.

Next we need to introduce the notion of a covariant derivative otherwise known as

a connection. The Levi-Civita connection is uniquely determined by the conditions

Dµgνλ = ∂µgνλ − Γρ
µνgρλ − Γρ

µλgµρ = 0

Γρ
µν = Γρ

νµ (21)
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What happens here? Well we want to impose the analogous condition

Dµeν
λ = ∂µeν

ρ − Γρ
µνeρ

λ + ωµ
λ
ρeν

ρ = 0 (22)

where

ωµ
στ = −ωµ

τσ (23)

takes values in the Lie algebra of the local Lorentz group.

Here we have done the usual physicist’s trick of introducing a connection for each

type of index (with a plus or minus sign depending on whether or not it appears upstairs

or downstairs respectively). We still want Γρ
µν = Γρ

νµ so we have

Dµeν
λ −Dνeµ

λ = ∂µeν
ρ − ∂νeµ

ρ + ωµ
λ
ρeν

ρ − ωµ
λ
ρeν

ρ = 0 (24)

If you know forms then this is just

deλ + ωλ
ρ ∧ eρ = 0 (25)

where ωλ
ρ = ωµ

λ
ρdx

µ. This is enough to determine ωµ
λ
ρ given eν

ρ. In fact there is a

formula for ωµ
λ
ρ in terms of eν

λ:

ωµ
λρ = 2eν[λ∂[µeν]

ρ] − eν[λeρ]σeµτ∂νeσ
τ (26)

However I don’t usually find it much use in practice, I just solve (25) in a case by case

basis. More generally the right hand side of (25) is given by the torsion tensor and, in

supergravity, this is typically non-zero in the presence of Fermionic fields

It is also easy to see that under a local Lorentz transformation e′µ
ν = Λν

ρ(x)eµ
ρ we

have

ω′
µ
ν
ρ = Λν

σ∂µ(Λ
−1)σρ + Λν

σωµ
σ
τ (Λ

−1)τ ρ (27)

so, as expected, it transforms like a connection. In particular it transforms like an gauge

theory connection for the Lie algebra of SO(1, D − 1).

Knowing ωµ
λ
ρ we can also deduce Γλ

µν from (22) and it is indeed given by the usual

formula:

Γλ
µν =

1

2
gλρ(∂µgρν + ∂νgµρ − ∂ρgµν) . (28)

Exercise: Show this (Hint: think about Dλgµν = 0 in terms of vielbeins first before

rushing into a painful calculation).

2.2 Aside: Differential forms

It is helpful to introduce the notion of a differential r-form which in components is

simply a (0, r) tensor that is totally anti-symmetric:

ωµ1...µr = ω[µ1...µr] (29)
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The form is written as

ω =
1

r!
ωµ1...µrdx

µ1 ∧ dxµ2 ∧ ... ∧ dxµr (30)

where dxµ is a basis for the cotangent space and ∧ is a totally anti-symmetric tensor

product:

dxµ1 ∧ dxµ2 ∧ ... ∧ dxµr = dxµ1 ⊗ dxµ2 ⊗ ...⊗ dxµr ± cyclic (31)

This allows for the notion of a wedge product of an r-form and s-form to give an (r+s)-

form:

ω ∧ ρ =
1

r!s!
ωµ1...µrρν1...νs(dx

µ1 ∧ dxµ2 ∧ ... ∧ dxµr) ∧ (dxν1 ∧ dxν2 ∧ ... ∧ dxνs)

=
1

(r + s)!
(ω ∧ ρ)µ1...µr+sdx

µ1 ∧ ... ∧ dxµr+s (32)

so

(ω ∧ ρ)µ1...µr+s =
(r + s)!

r!s!
ω[µ1...µrρµr+1...νr+s] (33)

where now the cyclic permutations are over all r + s indices. Note that one finds

ω ∧ ρ = (−1)rsρ ∧ ω (34)

i.e. even forms commute with each other and odd-forms but two odd-forms will anti-

commute.

A key point about forms is that we can define a derivative, the so-called exterior

derivative, without the need for a connection:

dω =
1

r!
∂νωµ1...µrdx

ν ∧ dxµ1 ∧ dxµ2 ∧ ... ∧ dxµr (35)

which is a totally anti-symmetric (0, r+1) tensor, i.e. an (r+1)-form. It is easy to see

that differential forms ω are invariant under diffeomorphisms with usual transformation

law for their components ωµ1..µr inherited from tensors. And so is dω, the point is

that the totally anti-symmetry kills off the inhomgeneous terms that one finds when

transforming ∂νωµ1.... Indeed you could, if it makes you happier, define

dω =
1

r!
Dνωµ1...µrdx

ν ∧ dxµ1 ∧ dxµ2 ∧ ... ∧ dxµr (36)

where Dµωµ1...µr = ∂νωµ1...µr − Γλ
νµ1

ωλ...µr + ... but the Christoffel connection terms will

vanish under anti-symmetry. The most important property of the exterior derivative is

that

d2ω = 0 (37)

for any form ω. This easily follows from the fact that ∂µ∂ν = ∂ν∂µ.
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There is one last operation one can do on forms if one has a metric. This is known

as the Hodge dual

󰂏ων1...νD−r
=

1

r!

󰁳
| det g|εν1...νD−rµD−r+1...µD

gµ1λ1 ...gµrλrωλ1...λr (38)

here εν1...µD
is the totally anti-symmetric tensor with ε012(D−1) = −1 (in Minkowski

space). Thus 󰂏ω is a D − r form.

Lastly we can integrate aD-form over aD-dimensional manifold via the identification
󰁝

ω =
1

D!

󰁝
ωµ1...µD

dxµ1 ∧ ... ∧ dxµD ≡
󰁝

ω012...Ddx
0dx1...dxD−1 (39)

Using the Hodge-dual we then have a natural inner-product on r-forms:

〈ω, ρ〉 =
󰁝

󰂏ω ∧ ρ (40)

exercise: Convince yourself that
󰁝

󰂏dA ∧ dA = −1

2

󰁝
dDx

√
−gFµνF

µν (41)

where Fµν = ∂µAν − ∂νAµ

2.3 Spin Connections

Next we return to Spinors. First we start with Γ-matrices. In tangent space they satisfy

{Γµ,Γν} = 2ηµν (42)

and we can choose your favourite representation in terms of constant matrices. All we

insist on is that

Γ†
µ = −Γ0ΓµΓ

−1
0 (43)

There is also always a matrix C such that

ΓT
µ = −CΓµC

−1 (44)

We can now construct

Γµ = eµ
νΓν (45)

which will satisfy

{Γµ,Γν} = 2gµν (46)

Lastly we define

Dµψ = ∂µψ +
1

4
ωµ

λρΓλρψ (47)
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.

Exercise: Show that if Aµ = ψ̄Γµψ then

Dµψ̄Γνψ + ψ̄ΓµDνψ = ∂µAν − Γσ
µνAσ

This gives us a new way to define a curvature tensor. Let us consider the commutator

[Dµ, Dν ]ψ = Dµ(∂νψ +
1

4
ων

λρΓλρψ)− (µ ↔ ν)

= ∂µ∂νψ +
1

4
∂µων

λρΓλρψ +
1

4
ων

λρΓλρ∂µψ − Γτ
µνDτψ

+
1

4
ωµ

λρΓλρ∂νψ +
1

16
ωµ

τπων
λρΓτπΓλρψ − (µ ↔ ν)

=
1

4
∂µων

λρΓλρψ +
1

16
ωµ

τπων
λρΓτπΓλρψ − (µ ↔ ν) (48)

since the terms involving derivatives of ψ cancel. Next we use the identity

ΓτπΓλρ = Γτπλρ + 2 · 2ηπλΓτρ + 2ηπλητρ (49)

where it is understood that the indices are anti-symmeterised in πλ and τρ. The first

and last terms cancel out under µ ↔ ν so

1

16
ωµ

τπων
λρΓτπΓλρψ − (µ ↔ ν) =

1

4
ωµ

τλωνλ
ρΓτρψ − (µ ↔ ν) (50)

Thus we have

[Dµ, Dν ]ψ =
1

4
ΓλρRµνλρψ (51)

with

Rµν
λ
ρ = ∂µων

λ
ρ − ∂νωµ

λ
ρ + ωµ

λ
σων

σ
ρ − ων

λ
σωµ

σ
ρ (52)

In terms of forms we have

Rλ
ρ = dωλ

ρ + ωλ
σ ∧ ωσ

ρ (53)

It turns out that

Rµνλ
ρ = eλσe

ρτRµν
σ
τ (54)

is the usual Riemann curvature tensor, where we raise and lower underlined indices using

η.

Exercise: Show this (Hint: think about [Dµ, Dν ]Aλ where Aλ = i󰂃Γλψ).

This is nice as the relation to gauge theory is closer: The Riemann tensor is a two-

form that takes values in the Lie-algebra of SO(1, D − 1), the structure group of the

tangent space (as opposed to the field strength in a gauge theory which is a two-form

that takes values in the Lie-algebra of the gauge group).
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2.4 Elementary Supergravity

So we are ready to write down an attempt at a supergravity. Our guess is

Sguess =
1

κ2

󰁝
dDx

√
−g(

1

2
R +

i

2
ψ̄µΓ

µνλDνψλ) (55)

The second term is known as a Raita-Schwinger term and we can take

Dµψν = ∂µψν +
1

4
ωµ

λρΓλρψν (56)

Note the absence of a Christoffel symbol for the µ index. Here Dµ acting on spinors is a

local Lorentz covariant derivative. Even if we had included the Christoffel symbol term

in Dνψλ then it would drop out from the action since it is symmetric in νλ, as is the

case with differential forms; indeed ψµdx
µ can be thought of as a spinor-valued 1-form.

Does it admit a supersymmetry of the form we discussed above? For concreteness

let us assume that ψµ and Γµ are real with ψ̄ = ψTC and C = Γ0. This is valid in four,

ten and eleven dimensions, which we will be most interested in, but not in general. Let

us look at the variation

δSguess =
1

κ2

󰁝
dDx

√
−g

󰁫1
2
δgµν(Rµν −

1

2
gµνR) +

i

2
δψ̄µΓ

µνλDνψλ +
i

2
ψ̄µΓ

µνλDνδψλ

󰁬
+ . . .

(57)

Here the ellipsis are terms that come from varying metric and connection terms in the

Raita-Schwinger term. Since the variation of a Boson is a Fermion these terms will

be cubic in Fermions. Thus we can look at the terms we have which are all linear in

Fermions and hence must vanish independently of the cubic ones.

First we use some Γ-matrix manipulations to combine the last two terms:

δψ̄µΓ
µνλDνψλ = Dνψ̄λΓ

µνλδψµ

= −ψλΓ
µνλDνδψµ +Dν(ψ̄λΓ

µνλδψµ)

= ψµΓ
µνλDνδψλ +Dν(ψ̄λΓ

µνλδψµ) (58)

The first line follows from the fact that CΓµνλ is an anti-symmetric matrix but Fermions

anti-commute. Thus, dropping a boundary term, we have

δSguess =
1

κ2

󰁝
dDx

√
−g

󰁫1
2
δgµν(Rµν −

1

2
gµνR) + iψ̄µΓ

µνλDνδψλ

󰁬
+ . . . (59)

Next we put in our guess δψλ = Dλ󰂃 and do some more manipulations:

iψ̄µΓ
µνλDνδψλ = iψ̄µΓ

µνλDνDλ󰂃

=
i

2
ψ̄µΓ

µνλ[Dν , Dλ]󰂃

=
i

8
ψ̄µΓ

µνλRνλρσΓ
ρσ󰂃

=
i

8
ψ̄µΓ

µνλΓρσRνλρσ󰂃 (60)
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Next we note that

ΓµνλΓρσ = Γµνλρσ + 3 · 2Γµνσgλρ + 3 · 2 · 2Γµgλρgσν (61)

where it is understood that terms are anti-symmeterised in µνλ and ρσ. The first two

terms give zero as R[νλρ]σ = 0 and Rνσ = Rσν . So we are left with

iψ̄µΓ
µνλDνδψλ =

12

8
iψ̄µΓ

[µgλ|ρgσ|ν]Rνλρσ󰂃 (62)

where we have put back the anti-symmeterisation (which is not needed for ρσ as Rµνρσ =

−Rµνσρ). There are only two types of independent terms:

iψ̄µΓ
µνλDνδψλ =

i

8
ψ̄µ

󰀃
2Γµgλρgσν − 4Γλgµρgσν

󰀄
Rνλρσ󰂃

=
i

8
ψ̄µ

󰀃
−2ΓµR + 4ΓλRλµ

󰀄
󰂃

=
i

2
(Rµλ −

1

2
gµλ)Γ

λ󰂃 (63)

Thus we see that we can cancel the variation of the Einstein-Hilbert term by taking

δgµν = − i

2
ψ̄µΓν󰂃− i

4
ψ̄νΓµ󰂃 (64)

or equivalently

δgµν = − i

2
(󰂃Γµψν + 󰂃Γνψµ)

δeµ
ν = − i

2
󰂃Γνψµ (65)

This is of course too simple. We have arranged for a symmetry to first order in the

Fermions for a supergravity in any dimension, provided that the spinors and Γ-matrices

are real (which is sometimes true). This can’t be the full story and indeed it isn’t.

For example there won’t be a matching of Bosonic and Fermionic degrees of freedom in

general (although there is in four-dimensions). The devil is in the cubic Fermion terms

and higher. But I hope its given you a flavour of how it works and all supergravities

contain a sector that looks like this. Constructing supergravities in dimensions above

three is quite a task, generally involving higher order Fermion terms appearing in the

Einstein-Hilbert term through a non-zero torsion as well as additional fields. Even in

four dimensions, where no new fields need to be added but additional Fermion terms

are needed, was tough (the first proof required an early use of computers in Theoretical

Physics) [4, 5]. And in ten and eleven dimensions it was a huge tour-de-force. We won’t

go into the details here. Happily others constructed these theories in the 1970’s and

80’s. We will simply take their results with eternal gratitude.
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3 Ten and Eleven-Dimensional Supergravities and

their BPS solutions: p-branes

3.1 Ten and Eleven-Dimensional Supergravities

We want to focus on String and M-theory which take place in ten and eleven dimensions.

It was noted by Nahm [6] that the maximum dimension for supergravity is eleven. At

two-derivative order the Lagrangian was constructed by Cremmer, Julia and Scherk [7]

using only symmetries. This is in fact a very important point: The maximal supergravity

theories are all uniquely determined at two-derivative level simply by the requirement

that they admit all of the 32 supersymmetries corresponding the largest spinor dimension

compatible with Nahm’s classification.

Starting in eleven dimensions one can then compactifiy down on tori to obtain maxi-

mally supersymmetric theories in lower dimensions. Indeed the motivation of Cremmer,

Julia and Scherk was to construct N = 8, D = 4 supergravity, which at that time was

heralded as the ultimate theory of everything (including by the Maharish Yogi). Its

called N = 8 supergravity as a minimal spinor in four-dimensions has 4 real compo-

nents and hence a 32-component real spinor in eleven-dimensions decomposes into 8

four-dimensional ones. it is not possible to add more supersymmetries and maintain a

theory with spins not greater than 2.

The great irony of supergravity is that, although the theories are defined by the fact

that they admit a supersymmetry between Bosons and Fermions one almost always only

winds up working with the purely Bosonic sector of these theories. In the interests of

time and conventions we will do the same. This saves and enormous amount of technical

details.

3.1.1 Eleven-dimensional Supergravity

The field content consists of

gµν , Cµνλ,ψµ

where Cµνλ is totally anti-symmetric (it is a 3-form) and ψµ is a Majorana (real) spinor.

As we noted it was constructed in [7] and the Bosonic part of the action takes the form

S11D =
1

κ2

󰁝 󰀕
1

2
R 󰂏 1− 1

4
󰂏 dC ∧ dC − 1

12
C ∧ dC ∧ dC

󰀖
(66)

Here the expression 󰂏1 =
√
−gdx0 ∧ ... ∧ dx10 is the Hodge dual of the constant 0-form

and is sometimes called the volume form

3.1.2 Ten-Dimensional Type IIA Supergravity

The field content consists of [9, 8]

gµν , Aµ,φ, Bµν , Cµνλ,ψµ,χ
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where Bµν and Cµνλ are totally anti-symmetric, χ and ψµ are Majorana spinors with

both chiralities (indeed from reduction χ = ψ10). However now µ = 0, 1, .., 9.

This theory simply arises from eleven-dimensional supergravity if we assume that no

fields depend on x10 and decompose the metric and fields as

ds211 = e−2φ/3gµνdx
µdxν + e4φ/3(dx10 + Aµdx

µ)

Bµν = Cµν10

χ = ψ10 (67)

The remaining fields Cµνλ and ψµ are the same as the eleven-dimensional theory but

where the range of µ is restricted to be µ = 0, ..., 9. With this reduction the Bosonic

part of the action is

SIIA =
1

κ2

󰁝
e−2φ

󰀕
1

2
R 󰂏 1− 2 󰂏 dφ ∧ dφ+

1

4
󰂏 dB ∧ dB

󰀖

+
1

κ2

󰁝 󰀕
1

4
󰂏 dA ∧ dA+

1

4
󰂏 (dC − A ∧ dB) ∧ (dC − A ∧ dB)− 1

4
B ∧ dC ∧ dC

󰀖

(68)

3.1.3 Ten-Dimensional Type IIB Supergravity

This theory’s construction was also a tour-de-force using sophisticated superspace meth-

ods [10, 11, 12]. The field content consists of

gµν , a,φ, B
a
µν , C

+
µ1...µ4

,ψa+
µ ,χ−

where Ba
µν and C+

µνλρ are totally anti-symmetric and the field strength of C+ is con-

strained to be self-dual: dC+ = 󰂏dC+. Here a = 1, 2 and Γ11ψ
a+ = ψa+ while

Γ11χ
− = −χ−.

Formally there is no action for this theory due to the presence of the self-dual field

dC+. Often one writes down an action and then imposes the constraint dC+ = 󰂏dC+

by hand.

SIIB =
1

κ2

󰁝
e−2φ

󰀕
1

2
R 󰂏 1− 2 󰂏 dφ ∧ dφ+

1

4
󰂏 dB1 ∧ dB1

󰀖

+
1

κ2

󰁝 󰀕
1

4
󰂏 da ∧ da+

1

4
󰂏 (dB2 − adB1) ∧ (dB2 − adB1)− 1

4
C+

4 ∧ dB1 ∧ dB2

󰀖

+
1

κ2

󰁝
1

4
󰂏 (dC+ − 1

2
B2 ∧ dB1 + 1

2
B1 ∧ dB2) ∧ (dC+ − 1

2
B2 ∧ dB1 + 1

2
B1 ∧ dB2)

(69)

The theory posses a novel and important SL(2,R) symmetry that rotates the a index

and acts as a fractional linear transformation on

τ = a+ ie−φ (70)

This is not apparent as written here. Rather we need to go to the Einstein frame:

13



3.1.4 The Einstein Frame

In these examples the Einstein-Hilbert term comes with a coefficient of e−2φ. This

matches what we expect from String perturbation theory but is not how we usually

write gravitational theories. It is referred to as the string-frame. To get something more

familiar we introduce

g(s)µν = e
4

D−2
φg(E)

µν (71)

where the superscripts refer to the String and Einstein frame respectively (so in the

above expressions we were working with g
(s)
µν ). One finds that in terms of g

(E)
µν the

actions will now look like

1

2κ2

󰁝
e−2φR[g(s)] 󰂏g(s) 1 =

1

2κ2

󰁝
R[g(E)] 󰂏g(E) 1 + . . . (72)

i.e. we recover the usual Einstein-Hilbert term. There will be various other power of eφ

in the remaining terms and well as corrections involving dφ. The SL(2,R) symmetry

that we mentioned above is more apparent in this frame where g
(E)
µν and C+ are invariant

whereas (B1, B2) transform as
󰀣

B1

B2

󰀤
→

󰀣
a b

c d

󰀤󰀣
B1

B2

󰀤
(73)

and

τ → aτ + b

cτ + d
(74)

(so g
(s)
µν transforms in a non-trivial way).

3.1.5 Ten-Dimensional Type I Supergravity

The ten-dimensional supergravities that we have considered have maximal supersym-

metry: corresponding to two Majorana-Weyl (real and chiral) spinor generators. We

can also construct supergravity with just one chirality. This is the minimal spinor in

ten-dimensions. The gravitational field content is

gµν ,φ, Bµν ,ψ
+
µ ,χ

−

In addition these can be coupled to a Yang-Mills theory with fields

Aµ,λ
−

that take values in the adjoint representation of the gauge group. The theory will then

be anomalous as it has chiral spinors. There is also a gravitational anomaly. However

the famous Green-Schwartz anomaly cancelation mechanism [13] (which shifts dB) but

this restricts the gauge groups to SO(32) or E8 × E8.

SIIA =
1

κ2

󰁝
e−2φ

󰀕
1

2
R 󰂏 1− 2 󰂏 dφ ∧ dφ+

1

4
󰂏 dB ∧ dB + α′tr(󰂏F ∧ F)

󰀖
(75)
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3.2 BPS Solutions

Supersymmetric theories admit special cases of solutions which preserve a fraction of

the supersymmetry (a typical solution will break all supersymmetries). These play an

important role as they turn out to be stable and some of their properties can be trusted

to all orders in the coupling constant due to the fact that they saturate the so-called

Bogomoln’yi bound which puts a lower bound of the mass of a state in terms of its

charges.

We can look for such solutions in supergravity. That is we want to find Bosonic

solutions for which there is a solution to

δψµ = 0 (76)

for some 󰂃 (and also set any other Fermion variation to zero). Since the Fermions vanish

we automatically have that the variation of the Bosons vanishes. Typically solving this

equation (and any Bianchi identities) is enough to solve the equations of motion (but

not always as we will see with the pp-wave).

3.2.1 Special Holonomy Manifolds

One such family of solutions is simply to turn off all fields except the metric. We are

then looking for manifolds and metrics which admit a solution to

Dµ󰂃 = 0 (77)

Such a spinor is called a Killing-spinor. The most common application is compactifica-

tion where we imagine a spacetime of the form

R1,d−1 ×M (78)

where M is thought of compact manifold, so small that we can’t observe it with present

day accelerators. If we want the low energy effective theory to have some supersymmetry

then we need solve Dµ󰂃 = 0 for some spinor of the form

󰂃 = ε⊗ η (79)

where ε is a spinor on R1,d−1 and η a commuting spinor on M. In particular we need

Dmη = 0 (80)

where m labels the coordinates of M. It then follows that

i

4
Rmnpqγ

pqη = 0 (81)

and hence the curvature of the manifold is restricted. In particular i
4
Rmnpqγ

pq generates

an infinitesimal element of the holonomy group H ⊂ SO(n) (that is the set of all

possible rotations you generate by parallel transport around a closed loop). But if there
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is a covariantly constant spinor we see that H cannot be all of SO(n). Such manifolds

are known as special holonomy manifolds. There is list of such manifolds and groups

due to Berger.

Note that if we contract Rmnpqγ
pqη = 0 with γn we and use properties of the Riemann

tensor we find

0 = γnRmnpqγ
pqη = Rmnpqγ

nγpqη

= Rmnpq(γ
npq + gnpγq − gnqγp)η

= −2Rmpγ
pη (82)

Thus unless γpη is somehow degenerate these manifolds are always Ricci-flat. And

further contraction with γm implies R = 0 even if somehow the Ricci tensor doesn’t

vanish.

Given η we can construct tensors:

Vm = η̄γmη

Tmn = η̄γmnη

Ωmnp = η̄γmnpη etc. (83)

here γm are γ-matrices associated to the manifold M and η̄ = η†c is the required Dirac

conjugate for spinors on M. If Dmη = 0 then these are constant tensors on M and that

is very restrictive. For example if Vm is not zero then we have a covariantly constant

vector. This is stronger than simply a Killing vector and it is not hard to see that it

requires that M is of the form

M = S1 ×M′ (84)

and the metric has no-dependence on the coordinate associated to S1. So we have

some kind of torus reduction. However in some cases we find Vm = 0 (if M is four-

dimensional ) and Vm = Tmn = 0 (if M is six-dimensional ) because cγm and cγmn

are anti-symmetric in a suitable sense. In these cases M is not of the form S1 × M′

but we do find a non-zero but constant two-form or three-form respectively. This leads

to so-called Calabi-Yau manifolds. Going to six and seven-dimensional manifolds leads

to interesting G2 and Spin(7) special holonomy manifolds respectively. This is a huge

topic that we don’t have time to do justice to.

It is not known how to construct metrics for compact special holonomy manifolds

(except tori with vanishing curvature). If we don’t look for compact special holonomy

manifolds then there are two relatively simple examples that can be constructed which

preserve half of the supersymmetry and which have wide applications.

3.2.2 Plane waves

The easiest supersymmetric solution to construct is that of a plane wave:

ds2 = 2dx+dx− +H(dx+)2 + (dx2)2 + ...+ (dxD−1)2 (85)
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where H is a function of x2, ..., xD−1 only. Let us construct the Killing spinor satisfying

Dµ󰂃 = 0. A choice of vielbein is

e− = dx− +
1

2
Hdx+ e+ = dx+ eI = dxI (86)

where I = 2, ..., D − 1 so that

ds2 = ηρσeµ
ρeν

σdxµdxν

= 2eν
−eν

+dxµdxν + eµ
Ieν

Idxµdxν (87)

and hence

de− =
1

2
∂IHdxI ∧ dx+ =

1

2
∂IHeI ∧ e+ de+ = 0 deI = 0 (88)

From which we learn

ω−
I =

1

2
∂IHe+ (89)

Note that since ω−I = −ωI−, ωI
+ = ωI− will be non-zero but ωI

+ ∧ e+ = 0. Thus our

Killing spinor equation is just

D+󰂃 = ∂+󰂃+
1

4
∂IHΓ−I󰂃 = 0

D−󰂃 = ∂−󰂃 = 0

DI󰂃 = ∂I󰂃 = 0 (90)

We can solve this by simply taking 󰂃 constant and Γ−󰂃 = 0. This is an example where

Γpη is degenerate and so we don’t automatically find Ricci flat metrics as Rµ+ can be

non-zero. In fact Ricci flatness requires

∂I∂IH = 0 (91)

3.2.3 Multi-Taub-NUT

There is another interesting BPS solution with no other fields turned-on known as Taub-

NUT, or more generally Gibbons-Hawking, whose non-trivial part is four-dimensional

and Euclidean. So to solve a D-dimensional supergravity we take the remaining dimen-

sions to be those of Minkowski space:

ds2 = H−1(dx1 + ω)2 +H((dx2)2 + ...+ (dx4)2)− (dx0)2 + (dx5)2 + ...(dxD−5)2

dω = 󰂏3dH (92)

In the last line H is only a function of x2, x3, x4, and ω is a 1-form on the associated R3

plane and 󰂏3 is the Hodge dual on that R3. However since d2 = 0 we see that

󰂏3d 󰂏3 dH = 0 (93)

which is just the Laplace equation ∂I∂IH = 0 where now I = 2, 3, 4. I leave it as

an exercise to show that there is a solution to Dµ󰂃 = 0 for these solutions. In fact

this metric appears frequently in String-Theory and M-theory and has many interesting

features so it is worth understanding it in greater detail. Sadly we don’t have time to

do it justice here.
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3.2.4 M2-branes

Maximal supergravities always contain form-fields. That is totally anti-symmetric ten-

sors Cµ1...mp+1 subject to an Abelian gauge transformation of the form δCµ1,...,mp+1 =

∂[µ1Λµ2...µp+1]. This is a higher-form analogue of Maxwell’s theory of electromagnetism,

corresponding to p = 0. For concreteness let us concentrate on eleven-dimensional

supergravity.

Let us look at another class of solution where the form field is non-zero. In particular

lets start by imagining that C012 is non-zero. This breaks the spacetime into a three-

dimensional Minkowskian part with coordinates xm,m = 0, 1, 2 and an eight-dimensional

Euclidean part with coordinates xI , I = 3, 4, ..., 10. Therefore we start with an ansatz

of the form

ds2 = e2A(−(dx0)2 + (dx1)2 + (dx2)2) + e2B((dx3)2 + ...+ (dx10)2)

G012I = −∂IC (94)

where Gµνλρ = 4∂[µCνλρ] and the functions A,B and C only depend on xI . A vielbein

frame is

en = eAdxn eJ = eBdxJ

den = ∂IAe
−BeI ∧ en deJ = ∂IBe−BeI ∧ eJ

= ∂IAe
I ∧ en = ∂IBeI ∧ eJ (95)

and you can check that

ωn
I = −ωI

n = ∂IAe
n ωI

J = −∂IBeJ + ∂JBeI (96)

satisfies

den + ωn
m ∧ em + ωn

J ∧ eJ = 0

deI + ωI
m ∧ em + ωI

J ∧ eJ = 0 (97)

We need to solve the supersymmetry variation equation δΨµ = 0 with

δΨµ = Dµ󰂃−
1

288
(Γµ

νλρσ − 8δνµΓ
λρσ)Gνλρσ (98)

Note that the only non-zero field strength is

GmnpI = −󰂃mnp∂IC (99)

What do we find:

Dm󰂃 = ∂m󰂃+
1

2
∂IAe

A−BΓmI󰂃

=
1

2
∂IAe

A−BΓmI󰂃

DI󰂃 = ∂I󰂃+
1

2
∂JBΓIJ󰂃 (100)
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where we assumed ∂m󰂃 = 0 and

Γm
ν1...ν4Gν1...ν4󰂃 = 0

ΓI
ν1...ν4Gν1...ν4󰂃 = 4ΓI

mnpJGnmpJ

= −4!ΓI
012J∂JC󰂃

= ∓4!e−3AΓIJ∂JC󰂃

δν1mΓν2ν3ν4Gν1ν2ν3ν4󰂃 = −3󰂃mnpΓ
npI∂IC󰂃

= −3!e−2A−BΓmΓ012ΓI∂IC󰂃

= ±3!e−2A−BΓmΓI∂IC󰂃

δν1I Γν2ν3ν4Gν1ν2ν3ν4󰂃 = 3!Γ012∂IC󰂃

= ±3!e−3A∂IC󰂃 (101)

where we have assumed Γ012󰂃 = ±󰂃.

From the δψm = 0 equation we find
󰀗
1

2
∂IAe

A−BΓmI ∓
8 · 3!
288

e−2A−BΓmΓI∂IC

󰀘
󰂃 = 0

1

2
e−2A−BΓmΓI

󰀗
∂IAe

3A ∓ 96

288
∂IC

󰀘
󰂃 = 0 (102)

From which we learn that

C = ±e3A (103)

Next we look at the δψI = 0 equation

∂I󰂃+
1

2
∂JBΓIJ󰂃−

1

288

󰀅
∓4!e−3AΓIJ∂JC ∓ 8 · 3!e−3A∂IC

󰀆
󰂃 = 0

∂I󰂃+
1

2
∂JBΓIJ󰂃−

1

288
[−3 · 4!ΓIJ∂JA− 3 · 8 · 3!∂IA] 󰂃 = 0 (104)

where in the second line we have used C = ±e3A. The ΓIJ terms cancel if

B = −2 · 3 · 4!
288

A = −1

2
A (105)

which just leaves

∂I󰂃+
144

288
∂IA󰂃 = ∂I󰂃+

1

2
∂IA󰂃 (106)

which is solved by 󰂃 = e−
1
2
A󰂃0 with 󰂃0 constant and Γ012󰂃0 = ±󰂃0

Lastly we need to check the 3-form equation of motion (the Einstein equations are

typically automatically satisfied if δψµ = 0 - but feel free to check). One finds

󰂏dC = − 1

7!
󰂃I1...I7Ke

3A+8B(e−2A)3e−2B∂K(e
3A)dxI1 ∧ ... ∧ dxI7

= − 1

7!
󰂃I1...I7Ke

−3A∂KAdx
I1 ∧ ... ∧ dxI7

d 󰂏 dC = − 1

7!
∂L(e

−3A∂KA)󰂃I1...I7Kdx
L ∧ dxI1 ∧ ... ∧ dxI7

= −∂K(e
−3A∂KA)dx

3 ∧ ... ∧ dx10 (107)
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from which we learn that e−3A = H is a harmonic function. If follows that e2A = H− 2
3 ,

e2B = H
1
3 and C = H−1:

ds2 = H−2/3(−(dx2)2 + (dx1)2 + (dx3)2) +H1/3((dx3)2 + ...+ (dx10)2)

C012 = ±H−1

H = 1 +
N󰁛

A=1

R6

|x− xA|6
(108)

Its easy to see that these solutions carry a charge with respect to the 3-form C:

1

vol(S7)

󰁝

S7

󰂏G = ±6R6N (109)

where the integral is over the spatial sphere at infinity in the eight-dimensional transverse

space.

3.2.5 M5-branes

There is another natural solution where we make use of the Hodge-dual of dC:

󰂏dC = G̃ (110)

which is a 7-form and, on shell, is closed so G̃ = dC̃ where C̃ is a 6-form2. Now we look

for a solution of the form

ds2 = e2A(−(dx0)2 + (dx1)2 + ...+ (dx5)2) + e2B((dx6)2 + ...+ (dx10)2)

GIJKL = εIJKLM∂M C̃ (111)

where now I, J = 6, 7, 8, 9, 10 and again the functions A,B and C only depend on xI .

As before vielbein frame and spin connection are

en = eAdxn eJ = eBdxJ (112)

and

ωn
I = −ωI

n = ∂IAe
n ωI

J = −∂IBeJ + ∂JBeI (113)

all that changes is the range of the indices. So we find

Dm󰂃 =
1

2
∂IAe

A−BΓmI󰂃

DI󰂃 = ∂I󰂃+
1

2
∂JBΓIJ󰂃 (114)

2This isn’t quite true, due to the C ∧ dC ∧ dC term 󰂏dC − 1
2C ∧ dC is closed but we won’t need this

subtly here.
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and

Γm
ν1...ν4Gν1...ν4󰂃 = eA−4BΓmΓ

IJKL󰂃IJKLM∂M C̃󰂃

= 4!eA−4BΓmΓMΓ678910∂M C̃󰂃

= ±4!eA−4BΓmΓM∂M C̃󰂃

ΓI
ν1...ν4Gν1...ν4󰂃 = ΓI

JKLMGJKLM󰂃

= e−3B󰂃IJKLMΓ678910󰂃JKLMP∂P C̃󰂃

= ∓4!e−3B∂IC̃󰂃

δν1mΓν2ν3ν4Gν1ν2ν3ν4󰂃 = 0

δν1I Γν2ν3ν4Gν1ν2ν3ν4󰂃 = 󰂃IJKLMΓJKL∂M C̃󰂃

= 3!e−3BΓIMΓ678910∂M C̃󰂃

= ±3!e−3BΓIM∂M C̃󰂃 (115)

where we now have assumed Γ678910󰂃 = ±󰂃. From the δψm = 0 equation we find

0 =

󰀗
1

2
∂IAe

A−BΓmI ∓
4!

288
eA−4BΓmΓI∂IC̃

󰀘
󰂃

=
1

2
eA−4BΓmΓI

󰀗
∂IAe

3A ∓ 96

288
∂IC̃

󰀘
󰂃 (116)

From which we learn that

∂IC̃ = ±6e3B∂IA (117)

Next we look at the δψI = 0 equation

∂I󰂃+
1

2
∂JBΓIJ󰂃−

1

288

󰀅
∓4!e−3B∂IC ∓ 8 · 3!e−3BΓIJ∂JC

󰀆
󰂃 = 0

∂I󰂃+
1

2
∂JBΓIJ󰂃−

1

288
[−6 · 4!∂IA− 6 · 8 · 3!ΓIJ∂JA] 󰂃 = 0 (118)

where in the second line we have used C = ±6e3B∂IA. The ΓIJ terms cancel if

B = −12 · 8 · 3!
288

A = −2A (119)

which tells us that

C̃ = ∓e−6A (120)

leaves us with

∂I󰂃+
144

288
∂IA󰂃 = ∂I󰂃+

1

2
∂IA󰂃 (121)

which is solved by 󰂃 = e−
1
2
A󰂃0 with 󰂃0 constant and Γ678910󰂃0 = ±󰂃0

Lastly we need to check the 3-form equation of motion. In fact by construction we

have d 󰂏G = 0 however we don’t have the Bianchi identity: dG = 0 it’s easy to see that

this means

∂I∂IC̃ = ∓∂I∂I(e
−6A) = 0 (122)
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Thus e−6A = H is harmonic and so we find

ds2 = H−1/3(−(dx2)2 + ...+ (dx5)2) +H2/3((dx6)2 + ...+ (dx10)2)

C̃ = ∓H

H = 1 +
N󰁛

A=1

R3

|x− xA|3
(123)

Now we find that

1

vol(S4)

󰁝

S4

G = ±3R3N (124)

where the integral is over the spatial sphere at infinity in the five-dimensional transverse

space.

3.3 Non-perturbative Stability

There is a method to establish that BPS solutions, that is ones that admit a spinor such

that δψµ = 0 are classically stable. Namely one constructs the so-called generalised

Nestor tensor (again things might be different in dimensions where spinors aren’t real

or there is more than just a gravitino):

Eµν = 󰂃Γµνλδψλ (125)

This has the property that, on-shell,

DµE
µν = δψµΓ

µνλδψλ + χ̄Γνχ . (126)

for some χ. Note that in this section we take all spinors to be commuting classical

variables.

Its a bit of a slog to show this for eleven-dimensional supergravity (try it! - Hint

χ = 0). However it is relatively easy to consider the case where only the metric is

non-zero and hence δψµ = Dµ󰂃. Here we have

Eµν = 󰂃ΓµνλDλ󰂃 (127)

so

DµE
µν = Dµ󰂃Γ

µνλDλ󰂃+ 󰂃ΓµνλDµDλ󰂃

= δψµΓ
µνλδψλ +

1

2
󰂃Γµνλ[Dµ, Dλ]󰂃

= δψµΓ
µνλδψλ +

1

8
󰂃ΓµνλΓρσRµλρσ󰂃 (128)

We have evaluated the second term before (see around (63)) and saw that it is propor-

tional to Rµν − 1
2
gµνR which, in the absence of matter, vanishes on-shell.
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The Nestor tensor arose in a refinement of Witten’s proof of the positive mass the-

orem in General Relativity. The idea is to compute the codimension-two integral

󰁌
EµνdSµν =

󰁝
DµE

µνdSν (129)

We are always looking at spacelike surfaces so, on-shell,

󰁝
DµE

µνdSν =

󰁝
DiE

i0dS0

=

󰁝
(δψiΓ

i0jδψj + χ̄Γ0χ)dS0

=

󰁝
(δψi

TΓijδψj + χTχ)dS0

=

󰁝
(δψiΓ

i0jδψj + χ̄Γ0χ)dS0

=

󰁝
(−(Γiδψi)

TΓjδψj + δψT
i δψi + χTχ)dS0 (130)

The argument is that Γiδψi = 0 is a Dirac-like equation of the form ΓiDi󰂃 + . . . = 0

and it is always possible to find a solution with 󰂃 approaching a given constant spinor

at spatial infinity. For such an 󰂃 we therefore have

󰁌
Ei0dSi0 =

󰁝
DiE

i0dS0 ≥ 0 (131)

On the other hand the left hand side is an integral over the sphere at spatial infinity and

therefore doesn’t depend on 󰂃, just its asymptotic value 󰂃∞. Thus we obtain a bound

󰁌
󰂃∞Γ0ijδψjdS0i ≥ 0 (132)

which is saturated if there is a solution to δψµ = 0, i.e. supersymmetric solutions.

Of course we need to see what the bound actually is. First lets look at the gravita-

tional bit. Here we expanding the metric at spatial infinity as

gµν = ηµν + hµν + . . .

eµ
ν = δνµ +

1

2
hµν + . . .

󰂃 = 󰂃∞ + . . . (133)

where 󰂃∞ is constant.

󰂃∞Γ0rjDj󰂃 = i󰂃∞Γ0rj(∂j󰂃+
1

4
ωj

µνΓµν󰂃)

∼ i

4
󰂃∞Γ0rjωj

µνΓµν󰂃∞

∼ ixk

4r
󰂃∞Γ0kjωk

µνΓµν󰂃∞ (134)
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where we used the fact that the ∂i󰂃 term is subleading (at least for solutions that are

spherically symmetric at large r) and doesn’t contribute to the integral as as r → ∞.

To continue we assume that ωk
0j = 0 or at least is subleading. We then have

󰂃∞Γ0rjDj󰂃 ∼
ixk

4r
󰂃∞Γ0kjωj

mnΓmn󰂃∞ (135)

where we use the fact that at infinity the Γ-matrices become those of flat space. Using

the formula (26) we find, to leading order,

ωj
mn = δl[m∂[jhl]

n] − 1

2
δl[mδn]sδjt∂lhs

t

=
1

4
∂jhmn −

1

4
∂jhnm − 1

4
∂mhnj +

1

4
∂nhmj −

1

4
∂mhnj +

1

4
∂nhmj

= −1

2
∂mhnj +

1

2
∂nhmj (136)

Next we note that

ΓkjΓmn = Γkjmn + δjmΓkn − δkmΓjn + δknΓjm − δjnΓkm + δjmδkn − δkmδjn (137)

The first term drops out as it is anti-symmetric in j and n and j and m. Continuing we

find

ΓkjΓmnωj
mn =− 1

2
∂jhnjΓ

kn + 0− 1

2
∂mhnjΓ

jm +
1

2
∂mhnnΓ

km

+
1

2
∂nhmmΓ

kn − 1

2
∂nhkjΓ

jn − 0 +
1

2
∂nhmnΓ

km

− ∂mhmk + ∂khnn (138)

The terms with Γ’s in them will vanish in the integral due to rotational symmetry as

the leading order metric term is just a function of r (i.e. one will only find terms of the

form xmxkΓkm)

Thus we find
󰁝

󰂃∞Γ0rjDj󰂃 =
1

2
󰂃T∞󰂃∞

󰁝
xk

2r
(∂khnn − ∂mhmk)d

D−2x (139)

The integral is known as the ADM mass (energy) of a spacetime.

The remaining terms in δψµ will give charges. For concreteness we consider eleven-

dimensional supergravity where

δψµ = Dµ󰂃−
1

288

󰀃
Γµ

ν1..ν4 − 8δν1µ Γν2ν3ν4
󰀄
Gν1..ν4 (140)

Let us consider the M2-brane case where G012K ∕= 0 at infinity. Now we are only

interested in the sphere at transverse infinity: off the M2-brane. Thus our i, j indices

don’t take the values 1, 2 but I, J = 3, .., 10. We are really calculating the mass per unit

area in the (x1, x2)-plane. We also note that Γr = xK

r
ΓK . Thus the extra contribution
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we are looking at is

1

288
Γ0rJ (ΓJ

ν1..ν4 − 8δν1J Γν2ν3ν4)Gν1..ν4󰂃∞ =
1

288
󰂃∞

xK

r
Γ0KJ

󰀃
4!ΓJ

012L − 8 · 3!δLJΓ012
󰀄
G012L󰂃∞

=
4!

288
󰂃∞

xK

r
ΓKJΓ12

󰀃
ΓJL + 2δLJ

󰀄
G012L󰂃∞

=
4!

288
󰂃∞

xK

r
ΓKJΓ12

󰀃
ΓJΓL + δLJ

󰀄
G012L󰂃∞

=
4!

288
󰂃∞

xK

r
Γ12

󰀃
6ΓKΓL + 3ΓKL

󰀄
G012L󰂃∞

(141)

Note that since we are at infinity we can use the flat space Γ-matrices. Now near infinity

we have G012K = xK

r
G012r and hence

1

288
Γ0rJ (ΓJ

ν1..ν4 − 8δν1J Γν2ν3ν4)Gν1..ν4󰂃∞ =
6 · 4!
288

󰂃∞Γ12G012r󰂃∞

= ±1

2
󰂃T∞󰂃∞G012r (142)

Thus we simply find the M2-brane charge. A similar calculation for the M5-brane shows

that

1

288
Γ0rJ (ΓJ

ν1..ν4 − 8δν1J Γν2ν3ν4)Gν1..ν4󰂃∞ =
1

288
󰂃∞

xK

r
Γ0KJ

󰀃
ΓJ

LMNP − 8δLJΓ
MNP

󰀄
GLMNP 󰂃∞

=
1

288
󰂃∞

xK

r
Γ0KJΓ678910

󰀃
󰂃JLMNP − 4δLJ 󰂃MNPRSΓ

RS
󰀄
󰂃LMNPQ∂QC̃󰂃∞

=
1

288
󰂃∞

xK

r
Γ0KJΓ678910

󰀓
4!∂JC̃ − 2 · 4!ΓJQ∂QC̃

󰀔
󰂃∞

(143)

At infinity the first term vanishes as ∂JC̃ ∼ xJ∂rC̃ and from the second term we find

1

288
Γ0rJ (ΓJ

ν1..ν4 − 8δν1J Γν2ν3ν4)Gν1..ν4󰂃∞ = −2 · 4!
288

󰂃∞
xK

r
Γ0Γ678910Γ

KJ
󰀃
ΓJΓQ − δJQ

󰀄
∂QC̃󰂃∞

= −2 · 4!
288

󰂃∞
xK

r
Γ0Γ678910

󰀃
3ΓKΓQ − ΓKQ

󰀄
∂QC̃󰂃∞

= ±1

2
󰂃T∞󰂃∞∂rC̃ (144)

which just measures the M5-brane charge. So the bound we get says that the ADM

mass of the spacetime is bounded below by the charges with equality iff there is super-

symmetry. That is to say no classical process can lower the mass of the spacetime below

the bound set by the charges and the charges are themselves conserved.

3.4 Branes more generally

We have found 4 types of supersymmetric solutions to eleven-dimensional supergravity:

plane gravitational wave, Multi-Taub-NUT, M2-branes and M5-branes. By dimension

reduction these lead to solutions of type IIA supergravity.
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Let us first look at the two brane solutions we found. These both carry charges with

respect to the 4-form field G = dC. In particular

QM2 =
1

vol(S7)

󰁝

S7

󰂏G

QM5 =
1

vol(S4)

󰁝

S7

G (145)

The M2-brane is said to have an electric charge and the M5-brane a magnetic charge

with respect to G. The spheres are the spheres at spatial infinity in the transverse space

to the plane where the singularity sits. This follows from a higher-dimensional version

of electromagnetic duality.

More generally if we have an (p+2)-form field strength Fp+2 that is closed, meaning

dFp+1 = 0 then we can (at least locally) find a potential Ap+1 such that F = dAp+1.

This often occurs by definition and the equation dFp+1 = 0 is automatic due to the fact

that d2 = 0 and is referred to as a Bianchi identity. But as we saw in the case of

the M5-brane this was not automatic. One then needs to solve the equation of motion

which is typically of the form d 󰂏 Fp+2 = d 󰂏 dAp+1 = 0. Such a potential naturally

couples to an object with an (p+ 1)-dimensional worldvolume:

Selectric = Tp

󰁝

Σp+1

∗A (146)

Here Σp+1 is a (p+1)-dimensional surface in spacetime which includes the time direction

and Tp is a constant with dimensions of (mass)p+1. The star here indicates the pull-back

of Ap+1 to Σ:

∗Am1...mp+1 = ∂m1X
µ
1 ...∂mp+1X

µp+1Aµ1...µp+1(X(σ)) (147)

where σm are local coordinates on Σp+1 and Xµ : Σp+1 → MD are the embedding

coordinates of Σp+1 into the bulk D-dimensional spacetime.

So we can think of it as the worldvolume of a p-dimensional object. Such an object

is known as a p-brane and this coupling is called an electric coupling.

On the other hand the equations of motion for Fp+2 are of the form d 󰂏 Fp+2 = 0

(perhaps with additional terms that we can ignore here). An alternative way to solve

this equation is to write Fp+2 = 󰂏dÃD−p−3 for some form ÃD−p−3. In this case the

Bianchi identity turns into d 󰂏 dÃD−p−3 = 0. This means that there is also a coupling

to Fp+2 of the form

Smagnetic = T̃D−p−4

󰁝

ΣD−p−3

∗Ã (148)

which is called a magnetic coupling. Thus we find a natural generalization of four-

dimensional electromagnetic duality. In particular if we set D = 4 and p = 0 then Fp+2

is the two-form of Maxwell’s theory, A is the usual 1-form potential and Ã a magnetic

dual 1-form. We see that supergravities which have a variety of form-fields then naturally
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admit states that carry electric or magnetic charges. However in general these will be

p-branes and (D − p− 4)-branes.

These two objects are mutually non-local in the sense that their potentials are related

by

dAp+1 = 󰂏dÃD−p−3 (149)

Just as in four-dimensions we find a Dirac quantization condition that ensures the Dirac-

string that appears in the magnetic solution is unobservable:

(2π)D−4lD−2TpT̃D−p−4 ∈ Z (150)

where l is the Planck length. Lastly it should be mentioned that the choice of sign above

corresponds to p-branes, with positive charges and anti-p-branes with negative charges.

We have seen in all the solutions that one finds a harmonic function which admits an

arbitrary number of simple poles. Indeed the solutions are essentially the same as four-

dimensional extreme Riessner-Nordstrom solutions of Einstein-Maxwell theory. Each

such pole contributes one to the charge and in this way we see that we can allow for an

arbitrary number N of branes. How is this possible? Well their gravitational attraction

is exactly cancelled by the repulsive force arising from the form field.

3.5 Branes in String Theory

Since the type IIA supergravity arises from dimensional reduction of eleven-dimensional

supergravity on S1 we can take the four solutions we found above and map them to

solutions of type IIA supergravity. They must then have interpretations as descriptions

of states in type IIA string theory. So what do we find (in string frame)?

Reduction of the pp-wave along x1 yields the following solution (in this section H is

always a Harmonic function on the transverse space):

ds2 = −H− 1
2 (dx0)2 +H

1
2 ((dx1)2 + ...(dx9)2)

A0 = ∓H−1

eφ = H
3
4 (151)

This is a black hole solution and is called the D0-brane. Note that I have relabelled the

coordinates also that the H here is equal to 1 +Hthere where Hthere is what appears in

(85) and one normally imposes Hthere → 0 at infinity).

Reduction of the multi-Taub-NUT metric along x1 yields

ds2 = H− 1
2 (−(dx0) + (dx1)2 + ...(dx5)2) +H

1
2 ((dx7)2 + (dx8)2 + (dx9)2)

Ã0123456 = ∓H−1

eφ = H− 3
4 (152)

This is a black 6-brane solution known as the D6-brane. In ten-dimensions is is electro-

magnetically dual to the D0-brane solution above.
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Reducing the M2-brane solution gives two different ten-dimensional solutions de-

pending on where we take the eleventh dimension to lie. If is is along the M2-brane we

find

ds2 = H− 1
3 (−(dx0)2 + (dx1)2) +H

2
3 ((dx2)2 + ...(dx9)2)

B01 = ∓H−1

eφ = H− 1
2 (153)

This is a string-like solution and we interpret it as the effective gravitational field profile

away from a fundamental string of type IIA string theory. On the other hand reducing

along a direction transverse to the M2-brane gives

ds2 = H− 1
2 (−(dx0)2 + (dx1)2 + (dx2)2) +H

1
2 ((dx3)2 + ...(dx9)2)

C012 = ∓H−1

eφ = H1/4 (154)

giving the D2-brane solution.

Reducing the M5-brane solution also gives two different ten-dimensional solutions

depending on where we take the eleventh dimension to lie. If it is along the M5-brane

we find

ds2 = H− 1
2 (−(dx0)2 + (dx1)2 + ...+ (dx4)2) +H

1
2 ((dx5)2 + ...(dx9)2)

C̃01234 = ∓H−1

eφ = H−1/4 (155)

This is a D4-brane solution. On the other hand reducing along a direction transverse to

the M5-brane gives

ds2 = (−(dx0)2 + ...+ (dx5)2) +H((dx6)2 + ...(dx9)2)

B̃012345 = ∓H−1

eφ = H
1
2 (156)

giving solution known as the NS5-brane. This solution is the magnetic dual to the

fundamental string solution above. It is known to correspond to an exact worldsheet

superconformal field theory (exact meaning valid to all orders in α′).

Thus we have found the fundamental string as a solution to type IIA supergravity

but also its magnetic dual known as the NS5-branes and then D0, D2, D4 and D6-

brane solutions. These latter solutions are known to correspond to Dp-branes which are

(p + 1)-dimensional planes in spacetime where open strings can end. Although these

states are non-perturbative in string theory, their tensions scale as 1/gs, their dynamics

is perturbative and described by open string diagrams. Their low energy dynamics is

governed by U(N) maximally supersymmetric Yang-Mills
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3.5.1 p-branes in type IIB Supergravity

Both the fundamental string solution and its magnetic dual the NS5-brane only involve

the metric, dilaton and Kalb-Ramond B-field. As such they are universal solutions to

all ten-dimensional supergravities, including type IIB.

If we look at the Dp-brane solutions (p = 0, 2, 4, 6) we found above we see that they

have a universal formula (in string frame):

ds2 = H− 1
2 (−(dx0)2 + (dx1)2 + ...+ (dxp)2) +H

1
2 ((dxp+1)2 + ...(dx9)2)

A01...p = ±H−1

eφ = H−(p−3)/4 (157)

As we have seen the solutions for even p arise in type IIA supergravity (the case of

p = 8 is special and does indeed appear in ten-dimensions but has no eleven-dimensional

description). None of these are solutions to type IIB supergravity as there aren’t form

field of the right rank: type IIB has even-form fields. However it turns out that type

IIB does have Dp-brane solutions for p = 1, 3, 5, 7 (and even p = −1!). These can be

obtained from type IIA string theory by T-duality which we will mention shortly.

4 Reduction on Tori and U-duality

A remarkable thing happens when you reduce maximal supergravities on tori to obtain

lower-dimensional theories. Namely rather exotic and unexpected symmetry groups

arise. One naturally expects that reduction on an n-dimensional torus would lead to

an SL(n,R) symmetry from the symmetries of the torus. Thus eleven-dimensional

supergravity compactified to eight-dimensions on a three-torus will have an SL(3,R)
symmetry. However we have seen that the type IIB supergravity has an SL(2,R) already
in ten dimensions. Reducing it to eight dimensions on a two-torus preserves this but will

include another SL(2,R) so we expect an SL(2,R)×SL(2,R) symmetry. Unlike in ten

dimensions the maximal supergravities in lower dimensions are unique so whether we

compactify eleven-dimensional supergravity on a three-torus or type IIB supergravity

on a two-torus we get the same theory. However one has SL(3,R) symmetry and

the other SL(2,R) × SL(2,R). So it turns out that the eight-dimensional theory has
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SL(2,R)×SL(3,R) symmetry! Further reduction leads to a curious list of symmetries:

D = 11 ∅
D = 10 IIA : ∅ IIB : SL(2)

D = 9 SL(2)

D = 8 SL(2)× SL(3)

D = 7 SL(5)

D = 6 SO(5, 5)

D = 5 E6

D = 4 E7

D = 3 E8

(158)

This enhancement is similar in spirit to Ehlers symmetry. This arises in four-dimensional

pure gravity compactified on a circle. The four-dimensional metric components lead to

a metric, vector A and scalar φ in three-dimensions. However in three-dimensions the

vector A can be dualized into a scalar a (dA = 󰂏3da). Thus the action can be written

as three-dimensional gravity coupled to two scalar fields which again we combine into

τ = a+ ie−φ. However miraculously one finds

S3D Gravity =
1

κ2

󰁝 󰀕
1

2
R 󰂏 1 +

1

2

󰂏dτ ∧ dτ

(τ − τ̄)2

󰀖
(159)

What is remarkable is that this action has an SL(2,R symmetry acting as fractional

linear transformation on τ (just as in type IIB above). One can use it as a solution gen-

erating technique since reduction on a circle merely requires that there is a Killing direc-

tion. Using this one can, for example, map the Schwarzschild solution to (Minkowsking)

Taub-NUT.

In String Theory the reduced actions take the form (in Einstein frame)3

S =
1

κ2

󰁝 󰀳

󰁃1

2
R 󰂏 1 +

1

2
tr(󰂏g−1Dgg−1Dg) +

D/2󰁛

p=1

G
(p)
IJ 󰂏 dAI

p+1 ∧ dAI
p+1

󰀴

󰁄 (160)

here g is an element of the coset G/H where G is the duality group and H is maxi-

mally compact subgroup. The covariant derivative g−1Dg is the projection of the usual

derivative on to the components of the Lie algebra orthogonal to the Lie algebra of H.

In addition G
(p)
IJ is some metric on the set of (p+1)-forms labelled by I. The range of I

is different for each p but the (p + 1)-forms form a representation of G (for example in

five-dimensions there are 27 one-forms corresponding to the fundamental representation

of E6).

These theories contain various p-branes that carry charges with respect to the various

form fields. Under these symmetry groups the charges of the various p-brane rotate

into each other. Since charges are quantized the continuous groups that we find in

supergravity cannot be symmetries but discrete subgroups of them are. For example in

type IIB supergravity the SL(2,R) becomes SL(2,Z). By looking at higher derivative

terms in supergravity one sees that only a discrete subgroup can survive.

3This isn’t quite the full story as extra care needs to be taken when p+ 2 = D/2.
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4.1 U-Duality and M-Theory

String theory is formulated in terms of a perturbatively finite expansion using the string

worldsheet. There are five consistent such expansions:

type IIA, type IIB, type I SO(32), Heterotic SO(32), Heterotic E8 × E8

Each of these has a low energy effective action that is a supergravity. Indeed the

first two supergravities share the same name as the string theory, no coincidence there.

The final three have only one ten-dimensional supersymmetry (with corresponding com-

ponents) but they also posses a ten-dimensional gauge field. Green-Schwarz anomaly

cancellation restricts the choice to SO(32) or E8×E8. The supergravities for these cases

are also determined uniquely at two-derivative order given their gauge group. So the

list of consistent ten-dimensional supergravities is

type IIA, type IIB, type I SO(32), type I E8 × E8

Note that there are only four supergravities but five string theories! Nobody thought

much about this at the time as supergravities were just a low energy approximation.

And certainly if you compute perturbative string scattering amplitudes you find different

answers. But supergravities have one thing going in their favour over string theory: they

are exact in the string coupling constant. Thus in cases of weak curvature supergravity

solutions are exact in gs.

So what’s up? It turns out that two of the string theories are non-peturbatively

equivalent. It can only be the type I and Heterotic SO(32) strings. However the

map between them is an S-duality in that it interchanges strong and weak coupling”

gtype I = 1/ghet. Thus their equivalence can’t be seen in the perturbative expansion.

In fact there is a web of dualities. Type IIB string theory is mapped to itself under

S-duality which takes gIIB → 1/gIIB. Upon reduction on a single S1 type IIA and

type IIB strings become equivalent via T-duality with is a known exact symmetry of

String Theory perturbatively. So too do their supergravities: hence there is a unique

maximally supersymmetric supergravity in each dimension below ten. Similarly so do

the two Heterotic theories as a generic Wilson line will break their gauge groups to

U(1)16. Lastly we have that Type IIA string theory on K3 (this is a single family of

four-dimensional compact manifolds which admit a single covariantly constant spinor η

and have holonomy SU(2) ⊂ SO(4)) is the same as Heterotic string theory (either one)

on T4.

There is one last player. We have seen that type IIA supergravity arises from di-

mensional reduction of eleven-dimensional supergravity. There is no known microscopic

theory underlying eleven-dimensional supergravity as there is for ten-dimensional super-

gravities. But we believe it exists and goes by the name of M-theory. The key idea is

that that the D0-branes provide a KK-like spectrum of states with masses and momenta

M =
|n|
gs

P11 =
n

gs
n ∈ Z (161)
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and identifying gs = R11/ls where R11 is the radius of the extra-dimension the type IIA

string theory will non-perturbatively regrow the eleventh dimension that we discarded

to construct it. Indeed string perturbation theory is an expansion about R11 = 0.

Furthermore the Heterotic E8 × E8 string theory arises from reducing M-theory on an

interval. The duality above between Type IIA on K3 and Heterotic Strings on T 4 now

lifts to M-theory on K3 and Heterotic Strings on T 3.

There is much evidence for M-theory but its BPS states are, as we have seen, M2-

branes and M5-branes and these cannot be used to construct a consistent worldsheet

expansion that we see in String theory. Although using the AdS/CFT correspondence

they can give gravitational duals to M-theory in certain asymptotically AdS spacetimes

(but we don’t know about AdS/CFT in these lectures).
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