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Sigma models

φµ : Σ→ T : x 7→ φµ(x)

∫
dx (gµν(φ)∂φµ∂φν + . . . )

gµν(φ)
(
∂2φν + ∂φρΓ ν

ρκ ∂µφ
κ + . . .

)
= 0

The geometry on T will depend on the symmetries of the
model and the dimension of Σ.
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Sigma models in two dimensions

A general bosonic sigma model in 2d is∫
d2x∂++φ

µ
(
gµν + bµν

)
(Φ)(φ)∂=φ

ν + ....

=:

∫
d2x∂++φ

µEµν(φ)∂=φ
ν + ....
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∫
d2x (gµν(φ)dφµ ∧ ∗dφν + bµν(φ)dφµ ∧ dφν)

=∫
d2x (gµν(φ)η∂φµ∂φν + bµν(φ)ε∂φµ∂φν)

Field equations from δφλ:

0 = gλκ∂
2φκ +

Γ0︷ ︸︸ ︷
1
2(gµλ,ν +gλν ,µ−gµν ,λ ) ∂φµ∂φν

+ 1
2(bµλ,ν +bλν ,µ−bµν ,λ )︸ ︷︷ ︸

1
2H = T

ε∂φµ∂φν
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Isometries 1.
There are several contexts where isometries of the target space
metric and b field are important, e.g., when constructing new
geometries via quotients, or for T-duality. Isometries are
transformations of the target space coordinates Xµ that leave
the metric and H field invariant. They can act with or without
fixed points (freely) and be realised as translations (no fixed
point) or rotations via matrix action etc. We shall assume that
the infinitesimal transformations of the coordinates may be
written

δXµ = εAkµ
A(X ) ,

with constant parameters εA, and that the infinitesimal
generators kA = kµ

A∂µ , A = 1, ...,d , form an d dimensional
algebra

[kA, kB] = f C
AB kC ,

where [, ] is the Lie bracket
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Isometries 2.

The isometry requirement becomes

LkAgµν = 0 , LkAHµνρ = 0 ,

where the last expression may be written

LkAH = ikAdH + d(ikAH) = d(ikAH) = 0

⇒ ikAdb = dvA

⇒ LkAb = d(vA + ikAb)

locally, for some one-form vA defined up to the addition of an
exact one-form. Note that only when vA = ikAb is the Lie
derivative of b zero. We set vA = 0 below.
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Gauging Isometries 1.
When εA = εA(x) the action

S =

∫
d2x∂++Xµgµν∂=X ν

is no longer invariant. Introduce the gauge one-form field AA

which transforms as

δAB = dεB − fCDBACεD.

The corresponding covariant derivative is

D
++
=
Xµ ≡ ∂

++
=
Xµ − AB

++
=

kµ
B .

and the invariant action becomes

S =

∫
d2xD++XµgµνD=Xµ
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Quotient 1.

Having gauged the isometry we may find a quotient defined on
the space of orbits of the gauge group or alternatively construct
a dual sigma model. We consider the quotient.

Starting from the gauged action for the bosonic sigma model,
we integrate out the gauge fields as follows:

0 = δS =

∫
d2x(δD++Xµ)gµνD=X ν + D++Xµgµνδ(D=X ν)

= −
∫

d2x
(
δAB

++kµ
BgµνD=X ν + D++XµgµνδAB

=kν
B

)
⇒ kµ

Bgµν(∂=X ν − AC
=kν

C) = 0 ,

⇒ kµ
Bgµν∂=X ν − AC

=HCB = 0

⇒ AC
= = HCBkµ

Bgµν∂=X ν where HCB = kµ
Cgµνkν

B .

And similarly for AC
++
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Quotient 2.
We plug back this expression for the connection into the action
to find

S →
∫

d2x∂++Xµ
(
gµν − kµAHABkBν

)
∂=X ν .

The target space is the quotientM/G where G is the isometry
group. The red expression is the quotient metric g̃ which acts
on orbits of G:

g̃µνX ν = g̃µν(X ν + αkν)

Note that we may assume that g(X + αk) = g(X ) since k
generates an isometry.
In the special case of just one isometry generated by kµ the
quotient metric reads

g̃µν = gµν −
kµkν
k2 .
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Recipe

Start from a simple geometry onM with isometry group G
Gauge the isometries in the action
Extremize to select a particular gauge connection
Plug back into the action to find the reduced model on the
quotient spaceM/G

10 / 35



2d overview

• Σd → T , Symmetries dictate the geometry of T .
(1,1) susy has the same target space geometry as the bosonic
model, but additional (non-maifest) supersymmetries constrain
the geometry further.

B.Zumino
L.Alvares-Gaume and D. Freedman

S.J.Gates, C.Hull and M. Roček

In 2D:

Susy (1,1) (2,2) (2,2) (4,4) (4,4)
E=g+b g,b g g,b g g,b
Geom Riem. Kähler Biherm. Hyperk. Bihyperc.

Table: The geometries of sigma-models with different
supersymmetries.
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Hyperkähler quotient.

1 Hyperkähler geometry
2 Focus on (4,4) in 2d , which is N = 2 in 4d .
3 Need representation of susy
4 Susy sigma model with (4,4)

5 Killing vectors compatible with the susy
6 Susy gauging of isometries
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Supersymmetry

Lorentz, Translation and Supersymmetry generators:

(M,P,Q, Q̄)

Schematically: (2,2) in 2d :

{Q,Q} ∼ P
[P,M] ∼ P
[Q,M] ∼ Q
[Q,P] = 0

Q+Q̄++Q̄+Q+︷ ︸︸ ︷
{Q+, Q̄+} = 2P++ = 2i∂++

{Q−, Q̄−} = 2P= = 2i∂=
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Superspace
The translation generators may be represented as differential
operators acting on fields over Minkowski space:

P++ = i∂++ , P= = i∂=

P
++
=
φ = i∂

++
=
φ(x++, x=)

Extend Minkowski space to Superspace and the fields to
superfields:

(x++, x=)→ (x++, x=, θ±, θ̄±)

{θ, θ} = 0 ,
∂θ

∂θ
=

∫
dθθ = 1

φ(x++, x=)→ φ(x++, x=, θ±, θ̄±)

Then the Qs may be represented as differential operators
acting on superfields:

Q±φ(x , θ, θ̄) =
( ∂

∂θ±
+ i θ̄±∂

++
=

)
φ =: (∂± + i θ̄±∂

++
=

)φ
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Covariant derivatives

(D±, D̄±) , {Q,D} = 0 , {Q̄,D} = 0 .

When acted on by these, the superfields still transform
covariantly under susy. They generate another copy of the susy
algebra

{D+, D̄+} = i∂++ , {D−, D̄−} = i∂= .

A general superfield is not an irreducible representation of
supersymmetry. To obtain irreps, use the covariant derivatives
to constrain superfields:
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Constrained (2,2) superfields

D̄±φ = 0 Chiral

D̄+χ = D−χ = 0 Twisted Chiral

D̄+D̄−Σφ = 0 Complex Linear *

D̄+D−Σχ = 0 Twisted Complex Linear *

D̄+` = 0 Left Semichiral

D̄−r = 0 Right Semichiral
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Components

Components by projection. Vertical bar means θ = θ̄ = 0.
Ex.: Minkowski components of a chiral superfield.

φ(x) = φ(x , θ, θ̄)|

ψ±(x) = D±φ(x , θ, θ̄)|

iF(x) = D+D−φ(x , θ, θ̄)|

Component supermultiplet: (φ, ψ±,F).

Note that

iD±| = Q±| = i
∂

∂θ±
= i
∫

dθ±
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Reduction (2,2)→ (1,1)→ (0,0)

Consider the chiral fields φa and let φA denote (φa, φ̄ā). Reduce
an action (2,2)→ (1,1) using

D̄± = 1
2(D + iQ)±

where D± are the (1,1) covariant derivatives and Q± generate
the second susys. Then the chirality constraints give

D̄±φa = D±φ̄ā = 0 ⇐⇒ Q±φA = JA
BD±φB

with JA
B = diag(i11,−i11). So∫

d2xD2D̄2K (φA)| = −
∫

d2xD2Q2 K (φA)|
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Pushing in the Qs:∫
d2xD2[D+φ

C(K ,CB −JD
CK ,DE JE

B
)
D−φB]|

=

∫
d2xD2[D+φ

cK ,cb̄ D−φ̄c̄ + D+φ̄
c̄K ,c̄b D−φc]|

A (1,1) sigma model (wo b)∫
d2xD2[D+ϕ

igi k̄ (ϕ, ϕ̄)D−ϕ̄k̄ ]
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Chiral models 2.
Pushing in the spinorial derivatives and using the definition of
the components we find

S =

∫
d2x

[
∂++φ

AgAB∂=φ
B + i 1

2(ψA
+∇=ψ

B
+ + ψA

−∇++ψ
B
−)gAB

−1
4RCDABψ

A
+ψ

B
+ψ

C
−ψ

D
−

]
after eliminating the auxiliary fields F . Now A = (i , ī) etc. The
geometry is Kähler

gi j̄ = K ,i j̄

Γ k
ij = gks̄∂igj s̄ = K ks̄K ,ij s̄ ,

Ri j̄k s̄ = gmj̄∂s̄(Γ m
ik ) = K ,i j̄k s̄ −Γ m

ik Γ n̄
j̄ s̄ K ,mn̄
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Chiral models 3.

Kähler geometry is the target space geometry of N = 1
sigma models in 4d and for certain (2,2) sigma models in
2d . The relation is 1− 1.

The geometry is displayed already at the (1,1) level. So from
now on it will be sufficient to reduce to that.

We now take a closer look at complex geometry, in particu-
lar at Kähler.
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Complex Geometry I.

Manifold (M2d , J)

Complex structure: J ∈ End(TM) J2 = −11

J is real in real coordinates. J i
jJ

j
k = −δi

k , only possible when
dim M = 2d .

Projectors: π± := 1
2 (11± iJ)

These define an involutive distribution if

π∓[π±u, π±v ] = 0 ⇐⇒ N (J) = 0. The Nijenhuis tensor.

⇐⇒ Jk
mJ j

[n, k ]− (m↔ n) = 0.

This is integrability of J.
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Complex Geometry II.

Hermitian Metric:

J tgJ = g , ⇐⇒ J i
jginJn

k = gjk

⇒ J i
jgin = −J i

ngij ⇐⇒ Jnj = −Jjn =: ωnj .

In (canonical) complex coordinates (z, z̄):

J =

(
iδz

z 0
0 −iδz̄

z̄

)
g =

(
0 gzz̄

gz̄z 0

)

ω = gJ = 1
2ωijdx i ∧ dx j = ωab̄dza ∧ dz̄ b̄ = igz̄zdz ∧ dz̄
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Kähler Geometry.

Kähler:

Integrable complex structure J and Hermitian metric g with
further conditions.
∃ Globally defined Kähler two form ω and Kähler potential
K (z, z̄):

dω = 0, ∇J = 0, gzz̄ = ∂z∂z̄K (z, z̄)

where ∇ is the Levi-Civita connection: ∇g = 0.

Now ω = i∂z∂z̄K (z, z̄)dz ∧ dz̄ so that (supressing indices)
dω = i∂z∂z∂z̄K (z, z̄)dz ∧ dz ∧ dz̄ + c.c. = 0 This also shows
that K is only defined up to Kähler gauge transformations
K (z, z̄)→ K (z, z̄) + f (z) + f̄ (z̄).
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Sigma Model and Kähler Geometry
B.Zumino, L. Alvarez-Gaume and D. Freedman

So, in the case of the (2,2) chiral superfield supersymmetric
sigma model discussed above, we identify the chiral fields
as canonical coordinates in terms of which the complex struc-
ture and metric are

J =

(
iδφφ 0

0 −iδφ̄
φ̄

)
g =

(
0 K ,φφ̄

K ,φ̄φ 0

)

and K (φ, φ̄) is the Lagrangian for the model. The target
space geometry is thus a Kähler geometry.
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So we have studied a (2,2) sigma model with chiral superfields
and found Kähler geometry on the target space. Our goal,
however, is the target space geometry of (4,4) sigma model
which we listed as having hyperkähler geometry. But we cannot
write an action in terms of (4,4) superfields. As HK geometry is
a special case of Kähler geometry, we instead start from the the
(2,2) action and require it to have additional non manifest susy.
The sigma model is

S =

∫
d2xd2θd2θ̄K (ΦA)| =

∫
d2xD2[D+φ

igi k̄ (φ, φ̄)D−φ̄k̄ ] ,

and in (1,1) the ansatz for extra susy reads

δφA = ε±J A
B(φ)D±φB
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We determine the matrix valued functions by two requirements

Closure of the algebra [δ1, δ2]φ = −iε1ε2∂φ
Invariance of the action δS = 0

From closure of the algebra it follows that J 2 = −1 and
N (J ) = 0 (Nijenhuis).

From invariance of the action it follows that J tgJ = g and that
∇J = 0.
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In our case we require two extra susys, (a total of four). The
sigma model is still

S =

∫
d2xd2θd2θ̄K (ΦA)| =

∫
d2xD2[D+φ

igi k̄ (φ, φ̄)D−φ̄k̄ ] ,

but the ansatz for extra susy now reads

δφA = εA±J A
AB(φ)D±φB

where A = 1,2,3.
Closure of the algebra says that each J squares to −11 and that
its Nijenhuis tensor vanishes. Invariance of the action ensures
that the metric g is hermitian with respect to each J

(JA)tgJA = g ,

and that the Levi-Civita covariant derivative of J vanishes

∇JA = 0 .
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In fact, the complex structures satisfy a quaternion algebra.

JAJB = −δAB + εABCJC .

These conditions are the hallmark of hyperkähler geometry
which we now take a closer look at
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Hyperkähler geometry 1.
Special cases of Kähler geometry arise when there is more
than one complex structure. A Hyperkähler manifold admits
three complex structures JA , A = 1,2,3 obeying the algebra
of the quaternions:

JAJB = −δAB + εABCJC

This corresponds to an SU(2) worth of complex structures,
since any linear combination

aJ 1 + bJ 2 + cJ 3

is again a complex structure, provided that the real coefficients
satisfy

a2 + b2 + c2 = 1 .

The metric is Hermitean with respect to all three complex
structures

J tAgJ A = g , A = 1,2,3 .
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Hyperkähler geometry 2.

The corresponding closed global two-forms are

ωA = gJ A , dωA = 0 ,

and all complex structures are covariantly constant w.r.t. the
Levi-Civita connection

∇m(J A)p
q = 0
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A complex stucture J takes on a simple form in holomorphic
coordinates

J =

(
i11 0
0 −i11

)
Holomorphic coordinates z w.r.t. J 1 will not be holomorphic for
2 and 3. Those will be related by a non-holomorphic coordinate
transformation. In the z coordinates the metric is gab̄ = K ,ab̄.
For complex dimension two, the fact that the geometry is
Hyperkähler results in the Monge-Ampère equation

det(K ,ab̄ ) = 1 .
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Hyperkähler geometry 3.

Hyperkähler is the target space geometry of N = 1 sigma
models in 6d , N = 2 models in 4d and (4,4) sigma
models in 2d .
The curvature tensor governs the transformation
Tp(M)→ Tp(M) that results from parallel transporting
vectors along closed loops. When these transformations
are globally defined, they form the Holonomy group ofM.
A manifold may be characterised by its Holonomy group.
The holonomy group of a dimC = m Kähler manifold is
contained in U(m), for a Calabi-Yau manifold it is contained
in SU(m) and for a Hyperkähler manifold of dimC = 2n in
the symplectic group Sp(n).
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