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Gauging Isometries 2.

For (1,1) sigma model with isometries the gauging is parallel to
that of the bosonic model.

S =

∫
d2xD+D−

(
D+φ

µ(x , θ)Eµν(φ)D−φν(x , θ)
)
|

→
∫

d2xD+D−
(
D+φ

µEµν(φ)D−φν
)
|

where

D±φµ = D±φµ − AB
±kµ

B (φ)
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Quotient in (1,1).

Quotient for (1,1) models: The story is again almost identical to
the bosonic case. We integrate out the gauge connections

0 = δS =

∫
d2xD+D−

(
δD+φ

µgµν(φ)D−φν +D+φ
µgµν(φ)δD−φν

)
|

where

D±φµ = D±φµ − AB
±kµ

B (φ) .

This gives the quotient model

S =

∫
d2xD+D−

(
D+φ

µ
(
gµν − kµAHABkBν

)
D−φν

)
.

The (1,1) supersymmetry is preserved through the use of (1,1)
superfields. For extended supersymmetry the story gets more
complicated.
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Symplectic quotient:
The gauged N = 2 nonlinear sigma model

An N = 2 sigma model has the action

S =

∫
d3xD2D̄2K (Φ, Φ̄)

Isometries X will in general only leave the potential K invariant
up to a Kähler gauge transformation

XK = νX (Φ) + ν̄X (Φ̄) .

This is sufficient since the holomorphic function νX is
annihilated by the measure D2D̄2.
The Kähler gauge transformation complicates the gauging
procedure and we will need some new concepts.
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A holomorphic isometry X on a Kähler manifold satisfies

LX J = 0 , LXω = 0

where J is the complex structure and ω the Kähler two-form. It
follows that

ıXω =: dµX

In holomorphic coordinates (φq, φ̄q̄) where X = XA(kA + k̄A),
this reads

ωpq̄XAkp
A ≡ −iKq̄pXAkp

A =
∂µX

∂φ̄q̄
=: µX

q̄ .

µX Killing potential, (Hamiltonian function),
µ :M→ g∗ moment map.
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So, from the Kähler gauge transformation we now have for a
holomorphic isometry

1
2 (1− iJ) XK = XAkp

A(φ)∂pK = −iµX + νX .

This will be part of the story when checking invariance once we
have defined the gauged action.
No minimal coupling. Instead the antichiral fields couple to a
real superfield V with the vector potential as one of its
components. In the case of isotropy, k i

A(φ) = (TA)i
jφ

j ,

φ̄i → φ̃i := (eV ) i
j φ̄

j =
(
eLiV φ̄

)i
, (V ) i

j = VA(TA) i
j .

This is an isometry transformation

φ̄i → φ̄j(e−iΛ̄) i
j , (Λ̄) i

j = Λ̄A(TA) i
j .

with (chiral) parameter Λ̄ = iV .
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if K is invariant (no Kähler gauge tfs) under the un-gauged
isometries the coupling is thus

K (φ, φ̄)→ K (φ, φ̃) .

If the invariance is up to KGTs we are still not OK, since

δS =

∫
XAν̄A(φ̄)

with X A constant, now reads

δS =

∫
Λ̄A(Φ, Φ̄)ν̄A(φ̄)

and will not vanish.
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The remedy is to introduce auxiliary (anti)chiral superfields ζ
and ζ̄. The extended potential

K̃ := K (φ, φ̄)− ζ − ζ̄ .

is now INvariant under isometries generated by

k ′A = kp
A∂p + νA∂ζ

k̄ ′A = k p̄
A∂p̄ + ν̄A∂ζ̄

Gauging is now straight forward

K̃ (φ, ζ, φ̄, ζ̄)→ K̃ (φ, ζ, φ̃, ζ̃) = K (φ, φ̃)−ζ − ζ̄ +
eLiV − 1
LiV

ν̄V

Expanding φ̃, rewriting the expression in a manifestly hermitian
form and making use of the relations between KGTs and
moment map yields the final form.
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Then the N = 2 gauged sigma model reads

K̂ (Φ, Φ̄,V ) = K (Φ, Φ̄)−
∫ 1

0
dtetYµV

where Y := VJ̇k and

µV = VAµA .

Eliminating VA yields

eYµA = 0 .

Solving this for VA and plugging the solution back produces the
Kähler quotient model, as the following example illustrates:
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Two chiral fields Φp, p = 1,2. Potential

K (Φp, Φ̄p̄) = ΦpΦ̄p̄ ,

i.e., the Kähler potential for C2. Then

XΦp = iξΦp , X Φ̄p̄ = −iξΦ̄p̄

generate a U(1) isometry. The moment map is

µξ = ξ(K − c)

with c a constant. The gauged potential becomes

K̂ (Φ, Φ̄,V ) = ΦpΦ̄p̄eV − cV
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Solving the V -equation gives

V = −ln
(

ΦpΦ̄p̄

c

)
Plugging this back we find

K̂ (Φ, Φ̄,V (ΦpΦ̄p̄)) = c ln(1 + ϕϕ̄) + f (Φ) + f̄ (Φ̄)

where

ϕ =
Φ1

Φ2

and we recognise the potential for the Fubini Study metric for
CP1, up to the Kähler gauge transformation f + f̄ .
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The gauged N = 4 nonlinear sigma model.
Hyperkähler geometry is a special case of Kähler geometry
with three complex structures JA , A = 1,2,3 satisfying a
quaternion algebra:

JAJB = −δAB + εABCJC

The N = 2 model describing Kähler geometry describes
hyperkähler geometry if there are supersymmetries
corresponding to all these complex structures, In terms of
N = 1 fields

δφp = JAp
q εαADαφ

q

or in N = 2

δΦp = D̄2(ε̄Ωp)

with ε a constant superfield parameter obeying certain
constraints and the non-manifest complex structures related to
the function Ω.
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The N = 4 Lie algebra valued gauge multiplet now becomes

(V ,S, S̄)

where V is a real N = 2 scalar superfield and S is a complex
chiral. Likewise, we now have a multiplet of moment maps

(µ, µ±)

The isometries we use are tri holomorphic, i.e., holomorphic wrt
all three complex structures.
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Let

µS
+ = SAµ+

A , µS
− = S̄Aµ−A

then

S =

∫
d3x

[
D2D̄2K̂ (Φ, Φ̄,V ) + 1

2D
2µS

+ + 1
2 D̄

2µS̄
−
]

has N = 4 susy and is invariant under the gauged isometry
transformations

δΦp = D̄2(ε̄eZ̄ Ωp) , Z := iVAkp
A∂p

We find the quotient action by eliminating the N = 4 gauge
fields (V ,S, S̄).
All global issues are under control.
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